Thermodynamic formalisms for Markov subshifts on *d*-trees

Jung-Chao Ban¹ Guan-Yu Lai¹ Yu-Liang Wu² ¹National Chengchi University ²University of Oulu

Ising model on trees

Consider an ideal magnet with a d-tree lattice structure $T^{(d)}$ as follows.

• The orientations of the spins are governed by a **state** μ , a probability measure over all possible configurations $\mathcal{A}^{T^{(d)}} \coloneqq \{+1, -1\}^{T^{(d)}}.$ • The **free energy** of μ restricted to initial *n*-subtree Δ_n is

$$
F_n(\mu)=\int \varphi_n d\mu -h_n(\mu)\quad (\beta>0),
$$

where, for some constant $a, b \in \mathbb{R}$,

(entropy)

$$
h_n(\mu) = \sum_{w \in \mathcal{A}^{\Delta_n}} -\mu[w] \log \mu[w],
$$

(internal energy) φ_n

$$
\displaystyle u(x)=\sum_{g\in\Delta_n\smallsetminus\{\mathrm{root}\}}^{w\in A^{\Delta_n}}ax_{\varsigma(g)}x_g+\sum_{g\in\Delta_n}bx_g,
$$

with $\varsigma(g)$ denoting the parent of g.

 \cdot An **equilibrium state** is a state μ minimizing the free energy per site

 $F(\mu) = \limsup$ $n\rightarrow\infty$ 1 \overline{n} $F_n(\mu).$

The equilibrium state is the one that could be observed macroscopically.

Properties

 $(d = 1)$ There is a unique invariant equilibrium μ , which is Markov and

• For simplicity, define $\Psi_{A,d} : \mathbb{R}^{\mathcal{A}}_{\geq 0} \to \in \mathbb{R}^{\mathcal{A}}_{\geq 0}$ $^{\mathcal{A}}_{\geq 0}$ as $\Psi_{A,d}(u)=\left(A^Tu\right)^d$.

$$
F(\mu)=-P\;\;\text{with}\;P:=\limsup_{n\to\infty}\frac{1}{|\Delta_n|}\log\sum_{w\in\mathcal{A}^{\Delta_n}}\sup_{x\in [w]}e^{-\varphi_n(x)}.
$$

 $|\Delta_n|$

Question

- *• Can we identify the equilibrium state (without invariance assumption)?*
- *• For Markov measures, is there a pointwise convergence?*

Setting

• The questions are studied under the following setting. Let A be a finite set and $A \in R_{\geq 0}^{\mathcal{A} \times \mathcal{A}}$. Assume the system is defined by

• By introducing a metric $D(x, y) = e^{\sup\{-|\Delta_n|: x_{\Delta_n} = y_{\Delta_n}\}}$ for ${\mathcal{T}}_A$, we have the following theorem.

Corollary

Moreover, $\lim_{n\to\infty}\frac{1}{n}$ $\frac{1}{n}\varphi_n(x)+\lim_{n\to\infty}\frac{1}{n}$ $\frac{1}{n} \log \mu \bigl[x_{\Delta_n} \bigr] = -P$ for μ -a.e. $x.$

 $(d \geq 2)$ [R. M. Burton, C.-E. Pfister, and J. E. Steif \[1\]](#page-0-0) showed

 $\inf\{F(\mu): \mu \text{ invariant}\} > -P \text{ iff } (a, b) \neq (0, 0).$

$$
\begin{array}{ll}\textbf{(configurations)} & \mathcal{T}_A = \left\{ x \in \mathcal{A}^{T^{(d)}} : A_{x_g, x_{\varsigma(g)}} > 0, \forall g \in T^{(d)} \setminus \{ \text{root} \} \right\} \\ & \textbf{(internal energy)} & \varphi_n(x) = -\sum_{g \in \Delta_n \setminus \{ \text{root} \}} \log A_{g, \varsigma(g)} \end{array}
$$

with an additional assumption

(irreducibility) $\forall a, b \in \mathcal{A}, \exists n \in \mathbb{N} \text{ such that } (A^n)$ a, b $> 0.$

Result 1: equilibrium states

Theorem ([J.-C. Ban and Y.-L. Wu \[2\]\)](#page-0-1)

There is a layer-dependent Markov equilibrium μ with

$$
F(\mu)=-P\text{ with }P:=\limsup_{n\to\infty}\frac{1}{|\Delta_n|}\log\sum_{w\in A^{\Delta_n}}\sup_{x\in\mathcal{T}_A\cap [w]}e^{-\varphi_n(x)}.
$$

Moreover, $\limsup_{n\to\infty} \frac{1}{|\Delta|}$ $\frac{1}{|\Delta_n|}\big(\varphi_n(x)+\log\mu \big[x_{\Delta_n}\big]\big)=-P$ for μ -a.e. $x.$

Note: The equilibrium μ found above is not unique.

Result 2: pointwise convergence

بس

OULUN

YLIOPISTO

Remark

• A is irreducible iff there exists a partition $(\mathcal{A}_j)_{j=0}^{p-1}$ $_{j=0}^{p-1}$ of A such that $a \in \mathcal{A}_i, b \in \mathcal{A}_j$ if and only if (A^{pn+j-i}) a, b > 0 for all large $n \in \mathbb{N}$. • If μ is a Markov measure with transition matrix M and $A = M$, then $\varphi_n(x) = \log \mu\big(\left\lfloor x_{\Delta_n}\right\rfloor \big\vert \, x_{\mathrm{root}}\big).$ Therefore, it suffices to study merely $\frac{1}{\sqrt{\Lambda}}$ $\varphi_n(x).$

Theorem ([J.-C. Ban, G.-Y. Lai, and Y.-L. Wu \[3\]](#page-0-2))

Suppose μ is a invariant Markov measure with (irreducible) transition matrix M and $\mathrm{supp}(\mu)= {\mathcal T}_A.$ If $a\in {\mathcal A}_0$, then for every interval $I\subset {\mathbb R}$,

$$
\lim_{n\to\infty}\frac{1}{\left|\Delta_{pn+j}\right|}\log\mu\!\left(\frac{\log\varphi_{pn+j}(x)}{\left|\Delta_{pn+j}\right|}\in I\left|x_{\mathrm{root}}=a_0\right.\right)=\sup_{\alpha\in I}\Lambda^*_j(\alpha)
$$

where Λ_i^* $f_j^*(\alpha) = \sup_{\mu \in \mathbb{R}} \mu\alpha - \lim_{n \to \infty} \frac{1}{|\Delta \mu|}$ $|\Delta_n|$ $\log \lVert \Psi \rVert$ \overline{pn} $\mathbb{E}_{A^{\mu}\odot M, d}^{pn}\bigl(\mathbb{1}_{\mathcal{A}_j}\bigr)\bigr\| .$ In particular, for μ -a.e. x satisfying $x_{\text{root}} = a_0$,

$$
\lim_{n\to\infty}\frac{\varphi_{pn+j}(x)}{\left|\Delta_{pn+j}\right|}=\alpha_j\coloneqq\mathbb{E}\left(\frac{\varphi_p(y)}{\left|\Delta_p\setminus\{\text{root}\}\right|}\,\Bigg|\,\{y:y_{\text{root}}\in\mathcal{A}_j\}\right).
$$

Application

Let
$$
A \in \{0,1\}^{\mathcal{A} \times \mathcal{A}}
$$
 be irreducible and $\mathcal{R}_{p,d} = \left\{ r \in (0,d]^p : \prod_{i=0}^{p-1} r_i = 1 \right\}$.
\n
$$
d^{-1} \overline{\dim}_B \mathcal{T}_A = \underline{\dim}_B \mathcal{T}_A = \dim_P \mathcal{T}_A = \max_{\mu} \underline{\dim}_P \mu = \lim_{n \to \infty} \frac{\left\| \Psi_{A,d}^n(1) \right\|}{\left| \Delta_n \right|}
$$
\n
$$
\dim_H \mathcal{T}_A = \max_{\mu} \dim_H \mu = \min_{r \in \mathcal{R}_{p,d}} \left(\sum_{\ell=0}^{p-1} \prod_{i=0}^{\ell} r_i^{-1} \right)^{-1} \cdot \log \rho(\mathcal{L}_{A,r})
$$
\nwhere $\mathcal{L}_{A,r} := \Psi_{A,r_{p-1}} \circ \cdots \circ \Psi_{A,r_0}$ with\n
$$
\rho(\mathcal{L}_{A,r}) = \sup \{ \alpha \in \mathbb{R} : \mathcal{L}_{A,r}(u) = \alpha u \in \mathbb{R}_{\geq 0}^{\mathcal{A}} \setminus \{0\} \}.
$$

Sources

[\[1\]](#page-0-3) R. M. Burton, C.-E. Pfister, and J. E. Steif, "The variational principle for Gibbs states fails on trees," *Markov Processes And Related Fields*, vol. 1, no. 3, pp. 387–406, 1995.

[\[2\]](#page-0-4) J.-C. Ban and Y.-L. Wu, "On the topological pressure of axial product on trees," *arXiv:2310.10242*.

[\[3\]](#page-0-5) J.-C. Ban, G.-Y. Lai, and Y.-L. Wu, "Hausdorff dimensions of topologically transitive Markov hom tree-shifts," *arXiv:2401.05320*.