New Hausdorff type dimensions and optimal bounds for bilipschitz invariant dimensions

Tamás Keleti (joint work with Richárd Balka)

Eötvös Loránd University, Budapest

Geometry and Fractals under the Midnight Sun Oulu, June 25-28, 2024

My coauthor: Richárd Balka (Rényi Institute, Budapest)

つへへ

The most classical/important fractal dimensions:

4 0 8 ×. ● ト E

 299

Bara B

The most classical/important fractal dimensions:

Hausdorff dimension dim*H*,

4 0 8 ×. AD 15 E

 QQ

化重新分离

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\overline{\dim}_{\text{B}}$ and \dim_{B} ,

Þ

 Ω

The South The

● ト

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\overline{\dim}_{\rm B}$ and $\dim_{\rm B}$,
- \bullet packing dimension dim_P (Tricot 1982).

 Ω

The South The

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\overline{\dim}_{\rm B}$ and $\dim_{\rm B}$,
- \bullet packing dimension dim_P (Tricot 1982).

 Ω

The South The

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\overline{\dim}_{\rm B}$ and dim_B,
- \bullet packing dimension dim_P (Tricot 1982).

Further recently studied and introduced fractal dimensions:

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\overline{\dim}_{\rm B}$ and $\dim_{\rm B}$,
- packing dimension dim_P (Tricot 1982).

Further recently studied and introduced fractal dimensions:

• Assouad dimension dim_A (Bouligand 1928, Assouad 1977)

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\dim_{\rm B}$ and $\dim_{\rm B}$,
- \bullet packing dimension dim_P (Tricot 1982).

Further recently studied and introduced fractal dimensions:

- Assouad dimension dim_A (Bouligand 1928, Assouad 1977)
- \bullet Lower dimension dim₁ (Larman 1967),

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\dim_{\rm B}$ and $\dim_{\rm B}$,
- packing dimension dim_P (Tricot 1982).

Further recently studied and introduced fractal dimensions:

- Assouad dimension dim_A (Bouligand 1928, Assouad 1977)
- \bullet Lower dimension dim₁ (Larman 1967),
- modified lower dimensions dim_{ML} (Fraser and Yu, 2018),

 Ω

All The Social The Sci

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\overline{\dim}_{\rm B}$ and $\dim_{\rm B}$,
- packing dimension dim_P (Tricot 1982).

Further recently studied and introduced fractal dimensions:

- Assouad dimension dim_A (Bouligand 1928, Assouad 1977)
- \bullet Lower dimension dim₁ (Larman 1967),
- modified lower dimensions dim_{ML} (Fraser and Yu, 2018),
- **Intermediate dimensions (Falconer, Fraser and Kempton, 2020),**

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{B} \supseteq \mathcal{B}$

The most classical/important fractal dimensions:

- Hausdorff dimension dim*H*,
- Upper and lower box dimensions $\dim_{\rm B}$ and $\dim_{\rm B}$,
- packing dimension dim_P (Tricot 1982).

Further recently studied and introduced fractal dimensions:

- Assouad dimension dim_A (Bouligand 1928, Assouad 1977)
- \bullet Lower dimension dim₁ (Larman 1967),
- modified lower dimensions dim_{ML} (Fraser and Yu, 2018),
- **•** Intermediate dimensions (Falconer, Fraser and Kempton, 2020),
- Generalised intermediate dimensions (Banaji, 2023).

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{B} \supseteq \mathcal{B}$

Self-similar sets and similarity dimensions

We consider simple self-similar sets that are equal to the disjoint union of finitely many (say *k*) identical scaled (say by ratio *r*) copies of themselves. These are called homogeneous self-similar sets with the strong separation condition (SSC).

 Ω

オート オート オート

Self-similar sets and similarity dimensions

We consider simple self-similar sets that are equal to the disjoint union of finitely many (say *k*) identical scaled (say by ratio *r*) copies of themselves. These are called homogeneous self-similar sets with the strong separation condition (SSC).

The similarity dimension of such set is defined as the value *s* for which

$$
kr^s=1.
$$

In the left $k = 5, r = 1/3$. Thus the similarity dimension is $s = \log_3 5 \approx 1.465$.

Self-similar sets and similarity dimensions

We consider simple self-similar sets that are equal to the disjoint union of finitely many (say *k*) identical scaled (say by ratio *r*) copies of themselves. These are called homogeneous self-similar sets with the strong separation condition (SSC).

The similarity dimension of such set is defined as the value *s* for which

$$
kr^s=1.
$$

In the left $k = 5, r = 1/3$. Thus the similarity dimension is $s = \log_3 5 \approx 1.465$.

All the fractal dimensions of these sets agree with their similarity dimension.

Tamás Keleti **[Dimensions](#page-0-0) Dimensions Dimensions joint with Richárd Balka** 4/14

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \le$ dim *B*.

Exception: Lower dimension \dim .

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Exception: Lower dimension \dim .

In fact, the modified lower dimension \dim_{MI} is obtained by making lower dimension monotone.

 Ω

All The Social The Sci

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Exception: Lower dimension \dim .

In fact, the modified lower dimension \dim_{ML} is obtained by making lower dimension monotone.

 \bullet finite stability: dim($A \cup B$) = max(dim A, dim B).

 Ω

A BA A BA

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Exception: Lower dimension \dim .

In fact, the modified lower dimension \dim_{ML} is obtained by making lower dimension monotone.

 \bullet finite stability: dim($A \cup B$) = max(dim A, dim B).

 Ω

A BA A BA

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Exception: Lower dimension \dim .

In fact, the modified lower dimension \dim_{ML} is obtained by making lower dimension monotone.

 \bullet finite stability: dim($A \cup B$) = max(dim A, dim B).

Exceptions: Lower box dimension \dim_B and lower dimension dim

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Exception: Lower dimension \dim .

In fact, the modified lower dimension \dim_{MI} is obtained by making lower dimension monotone.

 \bullet finite stability: dim($A \cup B$) = max(dim A, dim B).

Exceptions: Lower box dimension dim_B and lower dimension dim

• Lipschitz stability: dim $f(A) \le$ dim *A* if *f* is Lipschitz

 Ω

イロト イ押ト イヨト イヨト ニヨ

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Exception: Lower dimension \dim .

In fact, the modified lower dimension \dim_{MI} is obtained by making lower dimension monotone.

 \bullet finite stability: dim($A \cup B$) = max(dim A, dim B).

Exceptions: Lower box dimension dim_B and lower dimension dim

• Lipschitz stability: dim $f(A) \le$ dim *A* if *f* is Lipschitz

 Ω

イロト イ押ト イヨト イヨト ニヨ

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Exception: Lower dimension \dim .

In fact, the modified lower dimension \dim_{MI} is obtained by making lower dimension monotone.

- \bullet finite stability: dim($A \cup B$) = max(dim A, dim B). Exceptions: Lower box dimension \dim_B and lower dimension dim
- Lipschitz stability: dim $f(A) \le$ dim *A* if *f* is Lipschitz Exceptions: Assouad dimension dim_A, lower dimension dim₁ and modified lower dimension dim_{ML}

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Most of the previously mentioned fractal dimensions also have the following properties.

• monotonicity: $A \subset B \Longrightarrow$ dim $A \leq$ dim B .

Exception: Lower dimension \dim .

In fact, the modified lower dimension \dim_{MI} is obtained by making lower dimension monotone.

- \bullet finite stability: dim($A \cup B$) = max(dim A, dim B). Exceptions: Lower box dimension dim_B and lower dimension dim
- Lipschitz stability: dim $f(A) \le$ dim *A* if *f* is Lipschitz Exceptions: Assouad dimension dim_A, lower dimension dim₁ and modified lower dimension dim_{ML}
- **•** bilipschitz invariance:

 $\dim A = \dim B$ if A and B are bilipschitz e[qui](#page-25-0)[va](#page-27-0)[le](#page-15-0)[nt](#page-26-0)[.](#page-27-0)

Some of the previously mentioned fractal dimensions also have the following property.

Þ

 QQ

The South The

4 0 8 1 4 同 下

Some of the previously mentioned fractal dimensions also have the following property.

 σ -stability: dim $(\cup_{i=1}^{\infty} A_i) = \sup_{i}$ dim A_i

E

 Ω

All The South The

4 0 8 1 \leftarrow \leftarrow \leftarrow

Some of the previously mentioned fractal dimensions also have the following property.

 σ -stability: dim $(\cup_{i=1}^{\infty} A_i) = \sup_{i}$ dim A_i

E

 Ω

All The South The

4 0 8 1 \leftarrow \leftarrow \leftarrow

Some of the previously mentioned fractal dimensions also have the following property.

 σ -stability: dim $(\cup_{i=1}^{\infty} A_i) = \sup_{i}$ dim A_i

 σ -stable dimensions: Hausdorff dimension dim_H, packing dimension dim_P

в

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Some of the previously mentioned fractal dimensions also have the following property.

 σ -stability: dim $(\cup_{i=1}^{\infty} A_i) = \sup_{i}$ dim A_i

 σ -stable dimensions: Hausdorff dimension dim_H, packing dimension dim_P

The others can be modified to force this propery; in fact, this is a possible way to obtain packing dimension $\dim_{\rm P}$ from the upper box $dimension$ dim_B.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

The Problems

Problem (general)

Suppose that a notion of dimension satisfies a given list of the above proprties. What can we say about the dimension?

Less ambitous version: find optimal lower and upper bounds.

The Problems

Problem (general)

Suppose that a notion of dimension satisfies a given list of the above proprties. What can we say about the dimension?

Less ambitous version: find optimal lower and upper bounds.

The Problems

Problem (general)

Suppose that a notion of dimension satisfies a given list of the above proprties. What can we say about the dimension?

Less ambitous version: find optimal lower and upper bounds.

Much more ambitous version:

Problem (Fraser)

Find a list of natural poperties of dimensions that uniquely characterize the Hausdorff dimension.

 Ω

化重新分量

Optimal bounds for "reasonable" dimensions

Theorem (Balka-K 2023 Spring)

Let D be a function defined on the compact subsets of \mathbb{R}^n . If D is *monotone, Lipschitz stable and it agrees with the similarity dimension* for homogenous SSC self-similar sets then for any compact $K \subset \mathbb{R}^n$

$$
\dim_{\mathrm{H}}(K) \leq D(K) \leq \overline{\dim}_{\mathrm{B}}(K).
$$

Furthermore, if D is also σ*-stable then*

 $dim_H(K)$ < $D(K)$ < $dim_P(K)$.

∽≏∩

Optimal bounds for "reasonable" dimensions

Theorem (Balka-K 2023 Spring)

Let D be a function defined on the compact subsets of \mathbb{R}^n . If D is *monotone, Lipschitz stable and it agrees with the similarity dimension* for homogenous SSC self-similar sets then for any compact $K \subset \mathbb{R}^n$

$$
\dim_{\mathrm{H}}(K) \leq D(K) \leq \overline{\dim}_{\mathrm{B}}(K).
$$

Furthermore, if D is also σ*-stable then*

 $dim_H(K)$ < $D(K)$ < $dim_P(K)$.

∽≏∩

Optimal bounds for "reasonable" dimensions

Theorem (Balka-K 2023 Spring)

Let D be a function defined on the compact subsets of \mathbb{R}^n . If D is *monotone, Lipschitz stable and it agrees with the similarity dimension* for homogenous SSC self-similar sets then for any compact $K \subset \mathbb{R}^n$

 $dim_H(K) \leq D(K) \leq \overline{dim}_B(K)$.

Furthermore, if D is also σ*-stable then*

 $dim_H(K) \leq D(K) \leq dim_P(K)$.

Note that the Assouad dimension \dim_A can be greater than but it is not Lipschitz stable, only bilipschitz invariant.

Theorem (Balka-K 2023 Spring, shortly stated again)

If D is monotone, Lipschitz stable and it agrees with the similarity dimension for the simplest self-similar sets then on compact sets of \mathbb{R}^n *we have* dim_H $\leq D \leq$ dim_B.

If D is also σ *-stable then on compact sets of* \mathbb{R}^n *, dim_H* $\leq D \leq$ *dim_P.*

Theorem (Balka-K 2023 Spring, shortly stated again)

If D is monotone, Lipschitz stable and it agrees with the similarity dimension for the simplest self-similar sets then on compact sets of \mathbb{R}^n *we have* dim_H $\leq D \leq$ dim_B.

If D is also σ *-stable then on compact sets of* \mathbb{R}^n *, dim_H* $\leq D \leq$ *dim_P.*

Theorem (Balka-K 2023 Spring, shortly stated again)

If D is monotone, Lipschitz stable and it agrees with the similarity dimension for the simplest self-similar sets then on compact sets of \mathbb{R}^n *we have* dim_H $\leq D \leq$ dim_B.

If D is also σ *-stable then on compact sets of* \mathbb{R}^n *, dim_H* $\leq D \leq$ *dim_P.*

Question (Rutar 2023 Summer)

What if we replace Lipschitz stable by bilipschitz invariant above? Do we get dim_A as optimal upper bound?

 Ω

化重新分离

Theorem (Balka-K 2023 Spring, shortly stated again)

If D is monotone, Lipschitz stable and it agrees with the similarity dimension for the simplest self-similar sets then on compact sets of \mathbb{R}^n *we have* dim_H $\leq D \leq$ dim_B.

If D is also σ *-stable then on compact sets of* \mathbb{R}^n *, dim_H* $\leq D \leq$ *dim_P.*

Question (Rutar 2023 Summer)

What if we replace Lipschitz stable by bilipschitz invariant above? Do we get dim_A *as optimal upper bound?*

Answers: Not in general

 Ω

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

Theorem (Balka-K 2023 Spring, shortly stated again)

If D is monotone, Lipschitz stable and it agrees with the similarity dimension for the simplest self-similar sets then on compact sets of \mathbb{R}^n *we have* dim_H $\leq D \leq$ dim_B.

If D is also σ *-stable then on compact sets of* \mathbb{R}^n *, dim_H* $\leq D \leq$ *dim_P.*

Question (Rutar 2023 Summer)

What if we replace Lipschitz stable by bilipschitz invariant above? Do we get dim_A *as optimal upper bound?*

Answers: Not in general but yes for $n = 1$,

 Ω

イロト イ押 トイラト イラト

Theorem (Balka-K 2023 Spring, shortly stated again)

If D is monotone, Lipschitz stable and it agrees with the similarity dimension for the simplest self-similar sets then on compact sets of \mathbb{R}^n *we have* dim_H $\leq D \leq$ dim_B.

If D is also σ *-stable then on compact sets of* \mathbb{R}^n *, dim_H* $\leq D \leq$ *dim_P.*

Question (Rutar 2023 Summer)

What if we replace Lipschitz stable by bilipschitz invariant above? Do we get dim_A as optimal upper bound?

Answers: Not in general but yes for $n = 1$, and dim_{ML} is the optimal lower bound for any *n*.

 Ω

化重氮化重氮

Theorem (Balka-K 2023 Autumn)

Let D be a function defined on the compact subsets of \mathbb{R}^n . If D is *monotone, bilipschitz invariant and it agrees with the similarity dimension for homogenous SSC self-similar sets then for any compact* $K \subset \mathbb{R}^n$ we have

dim_{ML} $(K) \leq D(K)$.

If $n = 1$ *then for any compact* $K \subset \mathbb{R}^n$ *we also have*

 $D(K)$ < dim_A (K) ,

but this latter statement is false when n > 1 *.*

Counter-example for $D(K) \le \dim_A(K)$ when $n > 1$:

 $D(K) = \begin{cases} \dim_\text{A} K & \text{if } \text{K} \text{ is totally disconnected}, \end{cases}$ *n* otherwise.

Th[e](#page-43-0)n $D(L) = n > 1 = \dim_A(L)$ for any closed li[ne](#page-43-0) [s](#page-45-0)e[gm](#page-44-0)[en](#page-0-0)[t.](#page-63-0)

 OQ

Problem (Fraser)

Find a list of natural poperties of dimensions that uniquely characterize the Hausdorff dimension.

Notation: $K(\mathbb{R}^n) = \{$ compact subsets of \mathbb{R}^n .

Problem (Fraser)

Find a list of natural poperties of dimensions that uniquely characterize the Hausdorff dimension.

Notation: $K(\mathbb{R}^n) = \{$ compact subsets of \mathbb{R}^n .

Problem (Fraser)

Find a list of natural poperties of dimensions that uniquely characterize the Hausdorff dimension.

Notation: $K(\mathbb{R}^n) = \{$ compact subsets of \mathbb{R}^n .

Theorem (Balka-K 2023 Spring, stated again partly and shortly)

If D : $K(\mathbb{R}^n)$ → $\mathbb R$ *is monotone, Lipschitz stable, σ-stable and it agrees with the similarity dimension for the simplest self-similar sets then* $dim_H < D < dim_P$.

Problem (Fraser)

Find a list of natural poperties of dimensions that uniquely characterize the Hausdorff dimension.

Notation: $K(\mathbb{R}^n) = \{$ compact subsets of \mathbb{R}^n .

Theorem (Balka-K 2023 Spring, stated again partly and shortly) *If D* : $K(\mathbb{R}^n)$ → $\mathbb R$ *is monotone, Lipschitz stable, σ-stable and it agrees with the similarity dimension for the simplest self-similar sets then* $dim_H < D < dim_P$.

Theorem (Mattila-Mauldin 1997) $\dim_{\mathrm{H}} : \mathcal{K}(\mathbb{R}^n) \to \mathbb{R}$ is a Borel function, but $\dim_{\mathrm{P}} : \mathcal{K}(\mathbb{R}^n) \to \mathbb{R}$ is not.

 Ω

イロト イ押 トイラ トイラトー

Problem (Fraser)

Find a list of natural poperties of dimensions that uniquely characterize the Hausdorff dimension.

Notation: $K(\mathbb{R}^n) = \{$ compact subsets of \mathbb{R}^n .

Theorem (Balka-K 2023 Spring, stated again partly and shortly) *If D* : $K(\mathbb{R}^n)$ → $\mathbb R$ *is monotone, Lipschitz stable, σ-stable and it agrees with the similarity dimension for the simplest self-similar sets then* $dim_H < D < dim_P$.

Theorem (Mattila-Mauldin 1997) $\dim_{\mathrm{H}} : \mathcal{K}(\mathbb{R}^n) \to \mathbb{R}$ is a Borel function, but $\dim_{\mathrm{P}} : \mathcal{K}(\mathbb{R}^n) \to \mathbb{R}$ is not.

 Ω

イロト イ押 トイラ トイラトー

Problem (Fraser)

Find a list of natural poperties of dimensions that uniquely characterize the Hausdorff dimension.

Notation: $K(\mathbb{R}^n) = \{$ compact subsets of \mathbb{R}^n .

Theorem (Balka-K 2023 Spring, stated again partly and shortly) *If D* : $K(\mathbb{R}^n)$ → $\mathbb R$ *is monotone, Lipschitz stable, σ-stable and it agrees with the similarity dimension for the simplest self-similar sets then* $dim_H < D < dim_P$.

Theorem (Mattila-Mauldin 1997)

 $\dim_{\mathrm{H}} : \mathcal{K}(\mathbb{R}^n) \to \mathbb{R}$ is a Borel function, but $\dim_{\mathrm{P}} : \mathcal{K}(\mathbb{R}^n) \to \mathbb{R}$ is not.

Question of Fraser: $D : \mathcal{K}(\mathbb{R}^n) \to \mathbb{R}$ is Borel, monotone, Lipschitz stable, σ -stable and it agrees with the similarity dimension for the simplest self-similar sets $\implies D = \dim_H ?$ $\mathbf{A} = \mathbf{A} + \mathbf$

 QQ

Recall that for any $E \subset \mathbb{R}^n$, $\dim_{\mathsf{H}}(E)=\inf\left\{s\geq 0\colon \forall \varepsilon>0\; \exists (E_{i})\; E\subset \cup E_{i}, \sum_{i=1}^{\infty}|E_{i}|^{s}<\varepsilon\right\}.$

 \equiv

 Ω

イロト イ押ト イヨト イヨトー

Recall that for any $E \subset \mathbb{R}^n$, $\dim_{\mathsf{H}}(E)=\inf\left\{s\geq 0\colon \forall \varepsilon>0\; \exists (E_{i})\; E\subset \cup E_{i}, \sum_{i=1}^{\infty}|E_{i}|^{s}<\varepsilon\right\}.$

Definition (*D*-diameter restricted Hausdorff dimension)

$$
\dim_H^D(E) \stackrel{\text{def}}{=} \inf \left\{ s \geq 0 \colon \forall \varepsilon > 0 \; \exists (E_i) \; E \subset \cup E_i, \sum_{i=1}^{\infty} |E_i|^s < \varepsilon, |E_i| \in D \right\},
$$

where $D \subset (0,\infty)$ is a given set of allowed diameters.

To make things nicer we require inf $D = 0$ and also that for any $x \in D$ there exists $\delta > 0$ such that $[x, x + \delta) \subset D$.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Recall that for any $E \subset \mathbb{R}^n$, $\dim_{\mathsf{H}}(E)=\inf\left\{s\geq 0\colon \forall \varepsilon>0\; \exists (E_{i})\; E\subset \cup E_{i}, \sum_{i=1}^{\infty}|E_{i}|^{s}<\varepsilon\right\}.$

Definition (*D*-diameter restricted Hausdorff dimension)

$$
\dim_H^D(E) \stackrel{\text{def}}{=} \inf \left\{ s \geq 0 \colon \forall \varepsilon > 0 \; \exists (E_i) \; E \subset \cup E_i, \sum_{i=1}^{\infty} |E_i|^s < \varepsilon, |E_i| \in D \right\},
$$

where $D \subset (0,\infty)$ is a given set of allowed diameters.

To make things nicer we require inf $D = 0$ and also that for any $x \in D$ there exists $\delta > 0$ such that $[x, x + \delta) \subset D$.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Recall that for any $E \subset \mathbb{R}^n$, $\dim_{\mathsf{H}}(E)=\inf\left\{s\geq 0\colon \forall \varepsilon>0\; \exists (E_{i})\; E\subset \cup E_{i}, \sum_{i=1}^{\infty}|E_{i}|^{s}<\varepsilon\right\}.$

Definition (*D*-diameter restricted Hausdorff dimension)

$$
\dim^D_H(E) \stackrel{\text{def}}{=} \inf \left\{ s \geq 0 \colon \forall \varepsilon > 0 \; \exists (E_i) \; E \subset \cup E_i, \sum_{i=1}^{\infty} |E_i|^s < \varepsilon, |E_i| \in D \right\},
$$

where $D \subset (0,\infty)$ is a given set of allowed diameters.

To make things nicer we require inf $D = 0$ and also that for any $x \in D$ there exists $\delta > 0$ such that $[x, x + \delta) \subset D$.

Theorem (Balka-K 2024 Autumn)

The above way we obtain continuum many distinct dimensions and each of them has all the properties we have listed so far.

This gives a negative answer to Fraser's quest[io](#page-53-0)[n.](#page-55-0)

 QQ

Banaji suggested that perhaps Fraser's question can be saved by requiring the following additional property:

Hölder stability: dim $f(A) \leq \frac{1}{\alpha}$ dim *A* if $\alpha \in (0,1]$ and *f* is α -Hölder.

в

 Ω

イロト イ押ト イヨト イヨトー

Banaji suggested that perhaps Fraser's question can be saved by requiring the following additional property:

Hölder stability: dim $f(A) \leq \frac{1}{\alpha}$ dim *A* if $\alpha \in (0,1]$ and *f* is α -Hölder.

Good news:

Theorem (Balka-K 2023 Autumn)

If dim_H is Hölder stable then dim_H = dim_H.

Banaji suggested that perhaps Fraser's question can be saved by requiring the following additional property:

Hölder stability: dim $f(A) \leq \frac{1}{\alpha}$ dim *A* if $\alpha \in (0,1]$ and *f* is α -Hölder.

Good news:

Theorem (Balka-K 2023 Autumn)

If dim_H is Hölder stable then dim_H = dim_H.

Banaji suggested that perhaps Fraser's question can be saved by requiring the following additional property:

Hölder stability: dim $f(A) \leq \frac{1}{\alpha}$ dim *A* if $\alpha \in (0,1]$ and *f* is α -Hölder.

Good news:

Theorem (Balka-K 2023 Autumn)

If dim_H is Hölder stable then dim_H = dim_H.

So can Fraser's question be saved this way?

Banaji suggested that perhaps Fraser's question can be saved by requiring the following additional property:

Hölder stability: dim $f(A) \leq \frac{1}{\alpha}$ dim *A* if $\alpha \in (0,1]$ and *f* is α -Hölder.

Good news:

Theorem (Balka-K 2023 Autumn)

If dim_H is Hölder stable then dim_H = dim_H.

So can Fraser's question be saved this way? No.

Theorem (Siqi Wang 2024)

Hausdorff dimension is not the only dimension that has all the properties we have mentioned so far.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Banaji suggested that perhaps Fraser's question can be saved by requiring the following additional property:

Hölder stability: dim $f(A) \leq \frac{1}{\alpha}$ dim *A* if $\alpha \in (0,1]$ and *f* is α -Hölder.

Good news:

Theorem (Balka-K 2023 Autumn)

If dim_H is Hölder stable then dim_H = dim_H.

So can Fraser's question be saved this way? No.

Theorem (Siqi Wang 2024)

Hausdorff dimension is not the only dimension that has all the properties we have mentioned so far.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Banaji suggested that perhaps Fraser's question can be saved by requiring the following additional property:

Hölder stability: dim $f(A) \leq \frac{1}{\alpha}$ dim *A* if $\alpha \in (0,1]$ and *f* is α -Hölder.

Good news:

Theorem (Balka-K 2023 Autumn)

If dim_H is Hölder stable then dim_H = dim_H.

So can Fraser's question be saved this way? No.

Theorem (Siqi Wang 2024)

Hausdorff dimension is not the only dimension that has all the properties we have mentioned so far.

Right now we do not know what property or properties we should add to get a promising conjecture to characterize Hausdorff dimension.

STATE

 QQ

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Banaji suggested that perhaps Fraser's question can be saved by requiring the following additional property:

Hölder stability: dim $f(A) \leq \frac{1}{\alpha}$ dim *A* if $\alpha \in (0,1]$ and *f* is α -Hölder.

Good news:

Theorem (Balka-K 2023 Autumn)

If dim_H is Hölder stable then dim_H = dim_H.

So can Fraser's question be saved this way? No.

Theorem (Siqi Wang 2024)

Hausdorff dimension is not the only dimension that has all the properties we have mentioned so far.

Right now we do not know what property or properties we should add to get a promising conjecture to characterize Hausdorff dimension. Any idea? $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$ \equiv \cap α

\leftarrow a fractal under the midnight sun

イロトス 伊 トス ミトス ミト

 QQ