1-Lipschitz maps onto polygons

Attila Gáspár

Eötvös Loránd University, Budapest

Geometry and Fractals under the Midnight Sun 25 – 28 June 2024

Question (Kolmogorov, 1932)

Let $A \subseteq \mathbb{R}^2$ be a measurable set with $\lambda(A) < \infty$, and let $\varepsilon > 0$. Does there exist a 1-Lipschitz map $f : A \to \mathbb{R}^2$ such that $\lambda(f(A)) \ge \lambda(A) - \varepsilon$ and f(A) is a polygon?

Definition

A set $A \subseteq \mathbb{R}^2$ is a **polygon** if its boundary ∂A can be covered by finitely many lines.

- Balka, Elekes, Máthé (2013): False in general
- Open for compact sets

Let $K \subseteq \mathbb{R}^2$ be a compact set. $\mathbf{Q1}(K)$: For every $\varepsilon > 0$, there is a 1-Lipschitz map $f : K \to \mathbb{R}^2$ such that f(K) is a polygon and $\lambda(f(K)) \ge \lambda(K) - \varepsilon$. $\mathbf{Q2}(K)$: For every $\varepsilon > 0$, there is a 1-Lipschitz map $f : K \to \mathbb{R}^2$ such that f(K) is a polygon and $|f(x) - x| \le \varepsilon$ for every $x \in K$.

Theorem (Balka, Elekes, Máthé)

 $(\forall \mathcal{K} \ \mathbf{Q1}(\mathcal{K})) \Rightarrow (\forall \mathcal{K} \ \mathbf{Q2}(\mathcal{K}))$

Theorem (G.)

 $Q2(K) \Rightarrow Q1(K)$

Question (Balka, Elekes, Máthé)

Does Q2 hold for the Sierpiński carpet?

Definition

A set $A \subset \mathbb{R}^2$ is **tube-null** if for every $\varepsilon > 0$, it can be covered by strips of total width at most ε .

Theorem (Pyörälä, Shmerkin, Suomala, Wu, 2020)

The Sierpiński carpet is tube-null.

Theorem (G.)

Let $A \subseteq \mathbb{R}^2$ be a bounded set. If the boundary ∂A is tube-null, then $\mathbf{Q1}(A)$ and $\mathbf{Q2}(A)$ hold.

Definition

The proximal map of a convex function $g:\mathbb{R}^d
ightarrow\mathbb{R}$ is defined as

$$\operatorname{prox}_{g}(x) = \operatorname*{arg\,min}_{y \in \mathbb{R}^{d}} \left(g(y) + \frac{|x - y|^{2}}{2} \right)$$

(arg min denotes the unique minimizer).

Proposition

prox_g is 1-Lipschitz

Proposition

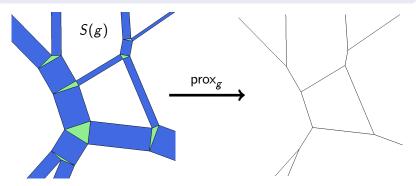
If g is L-Lipschitz, then $|\operatorname{prox}_g(x) - x| \leq L$ for every $x \in \mathbb{R}^d$

Generalized strips

Definition

Let $g : \mathbb{R}^d \to \mathbb{R}$ be the maximum of finitely many affine functions. The **generalized strip** associated to g is

 $S(g) = \{x : g \text{ is not differentiable at } prox_g(x)\}$



Generalized strips

Goal: find a generalized strip S(f) covering the tube-null set such that Lip f is small

Lemma

Let S(f) and S(g) be generalized strips. Then there exists a generalized strip S(h) such that $S(f) \cup S(g) \subseteq S(h)$ and Lip $h \leq \text{Lip } f + \text{Lip } g$.

Corollary

If K is a compact tube-null set, then K can be covered by some S(f) such that Lip f is arbitrarily small.

Another application of generalized strips:

Theorem (G.)

Let $A \subseteq \mathbb{R}^d$ be a bounded set. If ∂A can be covered by countably many C^2 hypersurfaces, then $\mathbf{Q1}(A)$ and $\mathbf{Q2}(A)$ hold.

Thank you for your attention!