Equidistribution of cusp points of Hecke triangle groups

L. Breitkopf, M. Keßeböhmer, A. Pohl

University of Bremen

• The Hecke triangle group Γ_q for the parameter $q \in \mathbb{N}_{\geq 3}$ and cusp width $\lambda_q \coloneqq 2 \cos \left(\frac{2\pi}{q} \right)$ $\frac{a}{a}$ \backslash is generated by

> − λ_a

Distribution results (BKP [1])

We proved that for $q \geq 3$ odd,

(1) For all $0 < \alpha \leq \beta \leq 1$ we have

in the Hecke triangle group Γ_q , we define the generalized Farey map F_q for odd $q \geq 3$ as the selfmap on [0, 1] that is piecewise given by the bijections

$$
S \coloneqq \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \text{and} \quad T_q \coloneqq \begin{bmatrix} 1 & \lambda_q \\ 0 & 1 \end{bmatrix}.
$$

• $\Gamma_3 = \text{PSL}(2, \mathbb{Z})$ and $\Gamma_3 \infty = \mathbb{Q}$

2

2

 λ_a

$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix} . x \mapsto \frac{ax+b}{cx+d} .
$$

 \dot{i}

Generalized Farey map

With the geometrically motivated elements

 $g_{q,k} := ((T_q S)^k S)^{-1}$

$$
[g_{q,k}^{-1}.0, g_{q,k}^{-1}.1] \to [0,1], \quad x \mapsto g_{q,k}.x,
$$

and

$$
[(Qg_{q,k})^{-1}.1,(Qg_{q,k})^{-1}.0] \to [0,1], \quad x \mapsto Qg_{q,k}.x,
$$

for $k \in \{(q + 1)/2, \ldots, q - 1\}.$

- $q = 3$ corresponds to the classical Farey map that generates the Stern–Brocot sequence
- Generalized Stern–Brocot sequence: $S_{-1} \coloneqq \emptyset$, and for $n \in \mathbb{N}$

apply to $q > 3$.

Takeaway

 $\varphi_Y \colon Y \to \mathbb{N} \cup \{ \infty \}, \quad \varphi_Y(x) \coloneqq \inf \{ n \in \mathbb{N} : F^n(x) \in Y \}.$

For any compact set $C \subset (0, 1]$ there exists a measurable set $Y(C) \subset (0, 1]$ that contains C and satisfies

 $\mu\left(\{\varphi_{Y(C)}>n\}\right)\sim n^{-1}$.

With these prerequisites, a result of [3] yields that the iteration of the transfer operators with respect to μ converges uniformly, which we use to finish the proof.

$$
\underset{n\to\infty}{\star}\text{-lim}\left(\log(n)\cdot m\big|_{F_q^{-n}\left([\alpha,\beta]\right)}\right)=\log\left(\frac{\beta}{\alpha}\right)m.
$$

(2) For each $x \in (0, 1]$ we have

$$
\lim_{n \to \infty} x \log(n) \sum_{h \in W_{q,n}} |h'(x)| \delta_{h,x} = m.
$$

(3) For each reduced fraction $(v, w) \in \Gamma_q$. $\infty \cap (0, 1]$ we have

$$
\lim_{n \to \infty} c_{v/w} v w \log(n) \sum_{(r,s) \in \mathbb{R}F_{q,n}(v,w)} \frac{1}{s^2} \delta_{r/s} = m,
$$

where $c_1 \coloneqq 2$ and $c_x \coloneqq 1$ for $x \neq 1$, and $\text{RF}_{q,n}(v, w)$ denotes the set of reduced fractions in F_a^{-n} $\int_{a}^{-n} \left(\frac{v}{u}\right)$ $\frac{\nu}{w}$).

The case $q = 3$ in (1) is established in [2] with a different proof, which however does not

Not the arithmeticity decides the distribution behavior, but the dynamics and geometry of the underlying group.

Key steps of proof

For all $q \geq 5$:

- 1. F_q is an AFN-map for the partition ξ of its branches:
	- (A) Adler's condition: The map $(F_q)''/(F_q'')$ $\binom{a}{a}^2$ is bounded.
	- (F) Finite image condition: ${F_q(I) : I \in \xi}$ is finite.
	- (N) Non-uniformly expanding: $F_q(0) = 0, F'_q$ $C'_q(0) = 1$, and

 $|F'_a$ $|\mathcal{L}_a'|\geq \rho(\varepsilon) > 1$ on $[\varepsilon, 1]$.

- 2. F_q is topologically mixing.
- 3. The transfer operator $(\widehat{F}_q)_m$ of F_q with respect to the Lebesgue measure m,

$$
(\widehat{F}_q)_m=\sum_{k=\frac{q+1}{2}}^{q-1}\tau(g_k)+\tau(Qg_k)
$$

where

 $\tau(g)f(x) \coloneqq |(g^{-1})'(x)|f(g^{-1}.x)$ for $g \in \text{PGL}(2,\mathbb{R}),\ f\colon \mathbb{R}\setminus\{g.\infty\} \to \mathbb{C}$,

has $h(x) = \frac{1}{x}$ $\frac{1}{x}$ as eigenfunction to the eigenvalue 1.

The measure $d\mu = h$ dm is σ -finite, infinite, F_q -invariant, ergodic, and conservative.

Define for any $Y \subset [0, 1]$ the first return time map

References

- [1] L. Breitkopf, M. Kesseböhmer, and A. Pohl. *Equidistribution of cusp points of Hecke triangle groups*. 2024. arXiv: 2402.04784 [math.DS].
- [2] M. Kesseböhmer and B. O. Stratmann. A dichotomy between uniform distributions of the Stern-Brocot and the Farey sequence. *Unif. Distrib. Theory* 7.2 (2012), 21–33.
- [3] I. Melbourne and D. Terhesiu. Operator renewal theory and mixing rates for dynamical systems with infinite measure. *Invent. Math.* 189.1 (2012), 61–110.