# Equidistribution of cusp points of Hecke triangle groups

L. Breitkopf, M. Keßeböhmer, A. Pohl

University of Bremen



## Distribution results (BKP [1])

We proved that for  $q \ge 3$  odd,

(1) For all  $0 < \alpha \le \beta \le 1$  we have

$$\star -\lim_{n \to \infty} \left( \log(n) \cdot m |_{F_q^{-n}([\alpha,\beta])} \right) = \log\left(\frac{\beta}{\alpha}\right) m \,.$$

(2) For each  $x \in (0, 1]$  we have

$$\star \lim_{n \to \infty} x \log(n) \sum_{h \in W_{q,n}} |h'(x)| \delta_{h,x} = m \,.$$

(3) For each reduced fraction  $(v, w) \in \Gamma_q . \infty \cap (0, 1]$  we have

$$\star -\lim_{n \to \infty} c_{v/w} vw \log(n) \sum_{(r,s) \in \operatorname{RF}_{q,n}(v,w)} \frac{1}{s^2} \delta_{r/s} = m ,$$

where  $c_1 \coloneqq 2$  and  $c_x \coloneqq 1$  for  $x \neq 1$ , and  $\operatorname{RF}_{q,n}(v, w)$  denotes the set of reduced fractions in  $F_q^{-n}\left(\frac{v}{w}\right)$ .

The case q = 3 in (1) is established in [2] with a different proof, which however does not

• The Hecke triangle group  $\Gamma_q$  for the parameter  $q \in \mathbb{N}_{\geq 3}$  and cusp width  $\lambda_q \coloneqq 2\cos\left(\frac{2\pi}{q}\right)$  is generated by

$$S \coloneqq \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 and  $T_q \coloneqq \begin{bmatrix} 1 & \lambda_q \\ 0 & 1 \end{bmatrix}$ .

•  $\Gamma_3 = \text{PSL}(2, \mathbb{Z}) \text{ and } \Gamma_3 . \infty = \mathbb{Q}$ 



$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} .x \mapsto \frac{ax+b}{cx+d}.$$

 $-\frac{\lambda_q}{2}$ 

 $\frac{\lambda_q}{2}$ 

### **Generalized Farey map**

With the geometrically motivated elements

 $g_{q,k} \coloneqq \left( (T_q S)^k S \right)^{-1}$ 

in the Hecke triangle group  $\Gamma_q$ , we define the generalized Farey map  $F_q$  for odd  $q \ge 3$  as the selfmap on [0, 1] that is piecewise given by the bijections

and

$$[g_{q,k}^{-1}.0, g_{q,k}^{-1}.1] \to [0,1], \quad x \mapsto g_{q,k}.x,$$

$$[(Qg_{q,k})^{-1}.1, (Qg_{q,k})^{-1}.0] \to [0,1], \quad x \mapsto Qg_{q,k}.x,$$

for  $k \in \{(q+1)/2, \dots, q-1\}$ .

- q = 3 corresponds to the classical Farey map that generates the Stern-Brocot sequence
- Generalized Stern–Brocot sequence:  $S_{-1} \coloneqq \emptyset$ , and for  $n \in \mathbb{N}$

apply to q > 3.

#### **Takeaway**

Not the arithmeticity decides the distribution behavior, but the dynamics and geometry of the underlying group.

### Key steps of proof

For all  $q \ge 5$ :

- 1.  $F_q$  is an AFN-map for the partition  $\xi$  of its branches:
  - (A) Adler's condition: The map  $(F_q)''/(F_q')^2$  is bounded.
  - (F) Finite image condition:  $\{F_q(I) : I \in \xi\}$  is finite.
  - (N) Non-uniformly expanding:  $F_q(0) = 0, F'_q(0) = 1$ , and

 $|F'_q| \ge \rho(\varepsilon) > 1$  on  $[\varepsilon, 1]$ .

- 2.  $F_q$  is topologically mixing.
- 3. The transfer operator  $(\widehat{F}_q)_m$  of  $F_q$  with respect to the Lebesgue measure m,

$$(\widehat{F}_q)_m = \sum_{k=\frac{q+1}{2}}^{q-1} \tau(g_k) + \tau(Qg_k)$$

where

 $\tau(g)f(x) \coloneqq |(g^{-1})'(x)| f(g^{-1}.x) \quad \text{for } g \in \mathrm{PGL}(2,\mathbb{R}), \ f \colon \mathbb{R} \setminus \{g.\infty\} \to \mathbb{C},$ 

has  $h(x) = \frac{1}{x}$  as eigenfunction to the eigenvalue 1.

The measure  $d\mu = h \ dm$  is  $\sigma$ -finite, infinite,  $F_q$ -invariant, ergodic, and conservative.

Define for any  $Y \subset [0, 1]$  the first return time map



 $\varphi_Y \colon Y \to \mathbb{N} \cup \{\infty\}, \quad \varphi_Y(x) \coloneqq \inf\{n \in \mathbb{N} : F^n(x) \in Y\}.$ 

For any compact set  $C \subset (0, 1]$  there exists a measurable set  $Y(C) \subset (0, 1]$  that contains C and satisfies

 $\mu\left(\{\varphi_{Y(C)}>n\}\right)\sim n^{-1}.$ 

With these prerequisites, a result of [3] yields that the iteration of the transfer operators with respect to  $\mu$  converges uniformly, which we use to finish the proof.

#### References

- [1] L. Breitkopf, M. Kesseböhmer, and A. Pohl. Equidistribution of cusp points of Hecke triangle groups. 2024. arXiv: 2402.04784 [math.DS].
- [2] M. Kesseböhmer and B. O. Stratmann. A dichotomy between uniform distributions of the Stern-Brocot and the Farey sequence. Unif. Distrib. Theory 7.2 (2012), 21-33.
- [3] I. Melbourne and D. Terhesiu. Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 189.1 (2012), 61-110.