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Motivation

The classical Stern–Brocot sequence partitions
ℚ ∩ [0, 1] into subsets by constructing iterated
mediants starting from 0/1 and 1/1.

• Mediant:
𝑎

𝑏
⊕ 𝑐

𝑑
:=

𝑎 + 𝑐

𝑏 + 𝑑

• Related to PSL(2,ℤ) via Farey map
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Central question

Does arithmeticity of PSL(2,ℤ) determine the distribution properties?

Hecke triangle groups

• The Hecke triangle group Γ𝑞 for the parameter
𝑞 ∈ ℕ≥3 and cusp width 𝜆𝑞 := 2 cos

(
2𝜋
𝑞

)
is

generated by

𝑆 :=
[

0 1
−1 0

]
and 𝑇𝑞 :=

[
1 𝜆𝑞
0 1

]
.

• Γ3 = PSL(2,ℤ) and Γ3.∞ = ℚ

𝑖

𝜆𝑞

2−𝜆𝑞

2

• PSL(2,ℝ) acts on ℝ ∪ {∞} by fractional linear transformations,[
𝑎 𝑏

𝑐 𝑑

]
.𝑥 ↦→ 𝑎𝑥 + 𝑏

𝑐𝑥 + 𝑑
.

Generalized Farey map

With the geometrically motivated elements

𝑔𝑞,𝑘 :=
(
(𝑇𝑞𝑆)𝑘𝑆

)−1

in the Hecke triangle group Γ𝑞, we define the generalized Farey map 𝐹𝑞 for odd 𝑞 ≥ 3 as
the selfmap on [0, 1] that is piecewise given by the bijections

[𝑔−1
𝑞,𝑘 .0, 𝑔

−1
𝑞,𝑘 .1] → [0, 1] , 𝑥 ↦→ 𝑔𝑞,𝑘 .𝑥 ,

and
[(𝑄𝑔𝑞,𝑘)−1.1, (𝑄𝑔𝑞,𝑘)−1.0] → [0, 1] , 𝑥 ↦→ 𝑄𝑔𝑞,𝑘 .𝑥 ,

for 𝑘 ∈ {(𝑞 + 1)/2, . . . , 𝑞 − 1}.

• 𝑞 = 3 corresponds to the classical Farey map that generates the Stern–Brocot
sequence

• Generalized Stern–Brocot sequence: 𝑆−1 := ∅, and for 𝑛 ∈ ℕ

𝑆𝑛 := 𝐹−𝑛(0, 1) \ 𝑆𝑛−1
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Fig. 1: Stern–Brocot sequence associated to 𝑞 = 5
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Fig. 2: Graph associated to 𝑞 = 5

• In ℤ[𝜆𝑞] × ℤ[𝜆𝑞] we identify (𝑎, 𝑐) and (−𝑎,−𝑐), and we call the equivalence

class (𝑎, 𝑐) a reduced fraction if there exists
[
𝑎 ∗
𝑐 ∗

]
∈ Γ𝑞.

• Lemma ([1]):
The cusp points Γ𝑞.∞ and the reduced fractions in ℤ[𝜆𝑞] × ℤ[𝜆𝑞] are in bijection.

Distribution results (BKP [1])

We proved that for 𝑞 ≥ 3 odd,

(1) For all 0 < 𝛼 ≤ 𝛽 ≤ 1 we have

★-lim
𝑛→∞

(
log(𝑛) · 𝑚 |

𝐹−𝑛
𝑞

(
[𝛼,𝛽]

) ) = log
(
𝛽

𝛼

)
𝑚 .

(2) For each 𝑥 ∈ (0, 1] we have

★-lim
𝑛→∞

𝑥 log(𝑛)
∑︁

ℎ∈𝑊𝑞,𝑛

|ℎ′(𝑥) |𝛿ℎ.𝑥 = 𝑚 .

(3) For each reduced fraction (𝑣, 𝑤) ∈ Γ𝑞.∞∩ (0, 1] we have

★-lim
𝑛→∞

𝑐𝑣/𝑤 𝑣𝑤 log(𝑛)
∑︁

(𝑟,𝑠)∈RF𝑞,𝑛(𝑣,𝑤)

1
𝑠2 𝛿𝑟/𝑠 = 𝑚 ,

where 𝑐1 := 2 and 𝑐𝑥 := 1 for 𝑥 ≠ 1, and RF𝑞,𝑛(𝑣, 𝑤) denotes the set of reduced
fractions in 𝐹−𝑛

𝑞

(
𝑣
𝑤

)
.

The case 𝑞 = 3 in (1) is established in [2] with a different proof, which however does not
apply to 𝑞 > 3.

Takeaway

Not the arithmeticity decides the distribution behavior, but the dynamics
and geometry of the underlying group.

Key steps of proof

For all 𝑞 ≥ 5:

1. 𝐹𝑞 is an AFN-map for the partition 𝜉 of its branches:

(A) Adler’s condition: The map (𝐹𝑞)′′/(𝐹′
𝑞)2 is bounded.

(F) Finite image condition: {𝐹𝑞 (𝐼) : 𝐼 ∈ 𝜉} is finite.
(N) Non-uniformly expanding: 𝐹𝑞 (0) = 0, 𝐹′

𝑞 (0) = 1, and

|𝐹′
𝑞 | ≥ 𝜌(𝜀) > 1 on [𝜀, 1] .

2. 𝐹𝑞 is topologically mixing.

3. The transfer operator (𝐹𝑞)𝑚 of 𝐹𝑞 with respect to the Lebesgue measure 𝑚,

(𝐹𝑞)𝑚 =

𝑞−1∑︁
𝑘=

𝑞+1
2

𝜏(𝑔𝑘) + 𝜏(𝑄𝑔𝑘)

where
𝜏(𝑔) 𝑓 (𝑥) := | (𝑔−1)′(𝑥) | 𝑓 (𝑔−1.𝑥) for 𝑔 ∈ PGL(2,ℝ), 𝑓 : ℝ \ {𝑔.∞} → ℂ ,

has ℎ(𝑥) = 1
𝑥

as eigenfunction to the eigenvalue 1.

The measure 𝑑𝜇 = ℎ 𝑑𝑚 is 𝜎-finite, infinite, 𝐹𝑞-invariant, ergodic, and conservative.

Define for any 𝑌 ⊂ [0, 1] the first return time map

𝜑𝑌 : 𝑌 → ℕ ∪ {∞} , 𝜑𝑌 (𝑥) := inf{𝑛 ∈ ℕ : 𝐹𝑛(𝑥) ∈ 𝑌 } .

For any compact set 𝐶 ⊂ (0, 1] there exists a measurable set 𝑌 (𝐶) ⊂ (0, 1] that
contains 𝐶 and satisfies

𝜇
(
{𝜑𝑌 (𝐶) > 𝑛}

)
∼ 𝑛−1 .

With these prerequisites, a result of [3] yields that the iteration of the transfer operators
with respect to 𝜇 converges uniformly, which we use to finish the proof.
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