Geometry and Fractals under the Midnight Sun, Oulu, Finland 25th – 28th June 2024

Simultaneous dimension result via transversality

Balázs Bárány

Budapest University of Technology and Economics Department of Stochastics

joint work with Károly Simon and Adam Śpiewak.

Introduction

- Let $S = \{f_1, \ldots, f_m\}$ be an IFS of contractions on \mathbb{R}^d ,
- There exists a unique non-empty compact set Λ such that $\Lambda = \bigcup_{i=1}^{m} f_i(\Lambda)$,

Introduction

- Let $S = \{f_1, \ldots, f_m\}$ be an IFS of contractions on \mathbb{R}^d ,
- There exists a unique non-empty compact set Λ such that $\Lambda = \bigcup_{i=1}^{m} f_i(\Lambda)$,
- Let $\Sigma = \{1, \ldots, m\}^{\mathbb{N}}$ be the symbolic space and let $\sigma(i_1, i_2, \ldots) = (i_2, i_3, \ldots)$ the left-shift operator, (denote $\mathbf{i} \wedge \mathbf{j}$ the common part of $\mathbf{i}, \mathbf{j} \in \Sigma$)
- Let $\Pi \colon \Sigma \mapsto \Lambda$ be the natural projection

$$\Pi(\mathbf{i}) = \lim_{n \to \infty} f_{i_1} \circ \cdots \circ f_{i_n}(0),$$

Introduction

- Let $S = \{f_1, \ldots, f_m\}$ be an IFS of contractions on \mathbb{R}^d ,
- There exists a unique non-empty compact set Λ such that $\Lambda = \bigcup_{i=1}^m f_i(\Lambda)$,
- Let $\Sigma = \{1, \ldots, m\}^{\mathbb{N}}$ be the symbolic space and let $\sigma(i_1, i_2, \ldots) = (i_2, i_3, \ldots)$ the left-shift operator, (denote $\mathbf{i} \wedge \mathbf{j}$ the common part of $\mathbf{i}, \mathbf{j} \in \Sigma$)
- Let $\Pi \colon \Sigma \mapsto \Lambda$ be the natural projection

$$\Pi(\mathbf{i}) = \lim_{n \to \infty} f_{i_1} \circ \cdots \circ f_{i_n}(0),$$

• Let μ be a left-shift invariant, ergodic probability measure on Σ

$$\dim_H \Pi_* \mu =?, \overline{\dim}_P \Pi_* \mu =?$$

- Suppose that every element $f_i \in \mathcal{S}$ of the IFS is a contracting $C^{1+\alpha}$ -conformal mappings (i.e. $D_x f_i \in O(d)$),
- Falconer, Ruelle: For the attractor $\Lambda = \bigcup_{i=1}^{m} f_i(\Lambda)$,

$$\dim_H \Lambda = \overline{\dim}_B \Lambda \le \min\{d, s_0\},\$$

where

$$s_0$$
 is the unique root of the pressure $P(s) = \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{\mathbf{i} \in \Sigma_n} ||f_{\mathbf{i}}'||^s \right)$,

where $\Sigma_n = \{1, \ldots, m\}^n$ and $f_{\mathbf{i}} = f_{i_1} \circ \cdots \circ f_{i_n}$ for $\mathbf{i} = (i_1, \ldots, i_n)$.

- Suppose that every element $f_i \in \mathcal{S}$ of the IFS is a contracting $C^{1+\alpha}$ -conformal mappings (i.e. $D_x f_i \in O(d)$),
- Falconer, Ruelle: For the attractor $\Lambda = \bigcup_{i=1}^{m} f_i(\Lambda)$,

$$\dim_H \Lambda = \overline{\dim}_B \Lambda \le \min\{d, s_0\},\$$

where

$$s_0$$
 is the unique root of the pressure $P(s) = \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{\mathbf{i} \in \Sigma_n} ||f_{\mathbf{i}}'||^s \right)$,

where $\Sigma_n = \{1, \ldots, m\}^n$ and $f_{\mathbf{i}} = f_{i_1} \circ \cdots \circ f_{i_n}$ for $\mathbf{i} = (i_1, \ldots, i_n)$.

• If Strong Open Set Condition (SOSC) holds

$$\Lambda \cap U \neq \emptyset, \ f_i(U) \cap f_i(U) = \emptyset \text{ and } f_i(U) \subseteq U$$

then $\dim_H \Lambda = s_0$.

- Suppose that every element $f_i \in \mathcal{S}$ of the IFS is a contracting $C^{1+\alpha}$ -conformal mappings (i.e. $D_x f_i \in O(d)$),
- Feng-Hu: For every ergodic left-shift invariant measure μ

$$\dim_H \Pi_* \mu = \overline{\dim}_P \Pi_* \mu \le \min \left\{ d, \frac{h_\mu}{\chi_\mu} \right\},\,$$

where

$$h_{\mu} = \lim_{n \to \infty} \frac{-1}{n} \sum_{\mathbf{i} \in \Sigma} \mu([\mathbf{i}]) \log \mu([\mathbf{i}]) \text{ and } \chi_{\mu} = -\int \log \|D_{\Pi(\sigma \mathbf{i})} f_{i_1}\| d\mu(\mathbf{i}).$$

- Suppose that every element $f_i \in \mathcal{S}$ of the IFS is a contracting $C^{1+\alpha}$ -conformal mappings (i.e. $D_x f_i \in O(d)$),
- \bullet Feng-Hu: For every ergodic left-shift invariant measure μ

$$\dim_H \Pi_* \mu = \overline{\dim}_P \Pi_* \mu \le \min \left\{ d, \frac{h_\mu}{\chi_\mu} \right\},\,$$

where

$$h_{\mu} = \lim_{n \to \infty} \frac{-1}{n} \sum_{\mathbf{i} \in \Sigma} \mu([\mathbf{i}]) \log \mu([\mathbf{i}]) \text{ and } \chi_{\mu} = -\int \log \|D_{\Pi(\sigma \mathbf{i})} f_{i_1}\| d\mu(\mathbf{i}).$$

• If Strong Open Set Condition (SOSC) holds then for every ergodic measure μ $\dim_H \Pi_* \mu = \frac{h_\mu}{\chi_\mu}.$

- Suppose that every element $f_i \in \mathcal{S}$ of the IFS is a contracting $C^{1+\alpha}$ -conformal mappings (i.e. $D_x f_i \in O(d)$),
- \bullet Feng-Hu: For every ergodic left-shift invariant measure μ

$$\dim_H \Pi_* \mu = \overline{\dim}_P \Pi_* \mu \le \min \left\{ d, \frac{h_\mu}{\chi_\mu} \right\},\,$$

where

$$h_{\mu} = \lim_{n \to \infty} \frac{-1}{n} \sum_{\mathbf{i} \in \Sigma_n} \mu([\mathbf{i}]) \log \mu([\mathbf{i}]) \text{ and } \chi_{\mu} = -\int \log \|D_{\Pi(\sigma \mathbf{i})} f_{i_1}\| d\mu(\mathbf{i}).$$

• If Strong Open Set Condition (SOSC) holds then for every ergodic measure μ $\dim_H \Pi_* \mu = \frac{h_\mu}{\chi_\mu}.$

Question: How can we handle the overlapping cases?

• Suppose that $S = \{f_i(x) = \lambda_i x + t_i\}_{i=1}^m, |\lambda_i| \in (0,1) \text{ and } t_i \in \mathbb{R}.$

then

- Suppose that $S = \{f_i(x) = \lambda_i x + t_i\}_{i=1}^m, |\lambda_i| \in (0,1) \text{ and } t_i \in \mathbb{R}.$
- If the Exponential Separation Condition (ESC) holds, i.e.

$$\limsup_{n \to \infty} \frac{1}{n} \log \left(\min_{\mathbf{i} \neq \mathbf{j} \in \Sigma_n} \left\{ |f_{\mathbf{i}}(0) - f_{\mathbf{j}}(0)| + |\log \lambda_{\mathbf{i}} - \log \lambda_{\mathbf{j}}| \right\} \right) > -\infty$$

- Hochman: For every Bernoulli measure $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}}$,

$$\dim_H \Pi_* \mu = \min \left\{ 1, \frac{h_\mu}{\chi_\mu} \right\};$$

- Suppose that $S = \{f_i(x) = \lambda_i x + t_i\}_{i=1}^m, |\lambda_i| \in (0,1) \text{ and } t_i \in \mathbb{R}.$
- If the Exponential Separation Condition (ESC) holds, i.e.

$$\limsup_{n\to\infty} \frac{1}{n} \log \left(\min_{\mathbf{i}\neq\mathbf{j}\in\Sigma_n} \left\{ |f_{\mathbf{i}}(0) - f_{\mathbf{j}}(0)| + |\log \lambda_{\mathbf{i}} - \log \lambda_{\mathbf{j}}| \right\} \right) > -\infty$$

then

– Hochman: For every Bernoulli measure $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}}$, $\dim_H \Pi_* \mu = \min \left\{1, \frac{h_\mu}{\gamma_\mu}\right\}$;

- Shmerkin:
$$\dim_{L^q} \Pi_* \mu = \min \left\{ 1, \frac{T(q)}{q-1} \right\}$$
 for every $1 \neq q > 0$, where

$$\dim_{L^q} \nu = \lim_{r \to \infty} \frac{\log \int \nu(B(x,r))^{q-1} d\nu(x)}{(q-1)\log r} \text{ and } \sum_i p_i^q \lambda_i^{-T(q)} = 1;$$

- Suppose that $S = \{f_i(x) = \lambda_i x + t_i\}_{i=1}^m, |\lambda_i| \in (0,1) \text{ and } t_i \in \mathbb{R}.$
- If the Exponential Separation Condition (ESC) holds, i.e.

$$\limsup_{n\to\infty} \frac{1}{n} \log \left(\min_{\mathbf{i}\neq \mathbf{j}\in\Sigma_n} \left\{ |f_{\mathbf{i}}(0) - f_{\mathbf{j}}(0)| + |\log \lambda_{\mathbf{i}} - \log \lambda_{\mathbf{j}}| \right\} \right) > -\infty$$

then

- Hochman: For every Bernoulli measure $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}}$,

$$\dim_H \Pi_* \mu = \min \left\{ 1, \frac{h_\mu}{\chi_\mu} \right\};$$

- Shmerkin: $\dim_{L^q} \Pi_* \mu = \min \left\{ 1, \frac{T(q)}{q-1} \right\}$ for every $1 \neq q > 0$, where

$$\dim_{L^q} \nu = \lim_{r \to \infty} \frac{\log \int \nu(B(x,r))^{q-1} d\nu(x)}{(q-1)\log r} \text{ and } \sum_i p_i^q \lambda_i^{-T(q)} = 1$$

 $\dim_{L^q} \nu = \lim_{r \to \infty} \frac{\log \int \nu(B(x,r))^{q-1} d\nu(x)}{(q-1)\log r} \text{ and } \sum_i p_i^q \lambda_i^{-T(q)} = 1;$ - Jordan and Rapaport: For every ergodic measure $\dim_H \Pi_* \mu = \min \left\{ 1, \frac{h_\mu}{\chi_\mu} \right\}.$

Special case: rational maps

• Suppose that $S = \left\{ f_i(x) = \frac{a_i x + b_i}{c_i x + d_i} \right\}_{i=1}^m$ such that

 $f_i \in C^{1+\alpha}(I), \ f_i(I) \subseteq I \ \text{and} \ \sup_{I \in I} |f_i'(x)| < 1 \ \text{on a compact interval} \ I \subset \mathbb{R}.$

Special case: rational maps

- Suppose that $S = \left\{ f_i(x) = \frac{a_i x + b_i}{c_i x + d_i} \right\}_{i=1}^m$ such that $f_i \in C^{1+\alpha}(I), \ f_i(I) \subseteq I \text{ and } \sup_{x \in I} |f_i'(x)| < 1 \text{ on a compact interval } I \subset \mathbb{R}.$
- ullet Hochman and Solomyak: If ${\mathcal S}$ satisfies the ESC, i.e.

$$\liminf_{n\to\infty} \frac{1}{n} \log \min_{\substack{i_1\neq j_1\\\mathbf{i},\mathbf{j}\in\Sigma_n}} \sup_{x\in I} \{|f_{\mathbf{i}}(x) - f_{\mathbf{j}}(x)|\} > -\infty,$$

then for every Bernoulli measure $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}}$, $\dim_H \Pi_* \mu = \min \left\{1, \frac{h_\mu}{\chi_\mu}\right\}$.

Open questions: $\dim_{L^q} \Pi_* \mu = ? \& \text{ dimension of ergodic measures}?$

• Let U be a locally compact, separable metric parameter space, and let η be a Borel probability measure on U.

- Let U be a locally compact, separable metric parameter space, and let η be a Borel probability measure on U.
- Let $I \subset \mathbb{R}^d$ be compact and simply connected. For $\lambda \in U$, let $\mathcal{S}_{\lambda} = \left\{ f_i^{(\lambda)} : I \to I \right\}_{i=1}^m$ be a parametrized family of IFS such that $\lambda \mapsto f_i^{(\lambda)}$ is continuous from U to $C^{1+\alpha}(I)$. Let $\Pi_{\lambda} : \Sigma \to I$ be the nat. proj.

- Let U be a locally compact, separable metric parameter space, and let η be a Borel probability measure on U.
- Let $I \subset \mathbb{R}^d$ be compact and simply connected. For $\lambda \in U$, let $S_{\lambda} = \left\{ f_i^{(\lambda)} : I \to I \right\}_{i=1}^m$ be a parametrized family of IFS such that $\lambda \mapsto f_i^{(\lambda)}$ is continuous from U to $C^{1+\alpha}(I)$. Let $\Pi_{\lambda} \colon \Sigma \to I$ be the nat. proj.
- Suppose that the transversality condition holds, i.e. there exists C>0 such that for every $\mathbf{i}, \mathbf{j} \in \Sigma$ with $i_1 \neq j_1$

$$\eta\left(\left\{\lambda \in U : \|\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})\| \le r\right\}\right) \le Cr^d.$$

- Let U be a locally compact, separable metric parameter space, and let η be a Borel probability measure on U.
- Let $I \subset \mathbb{R}^d$ be compact and simply connected. For $\lambda \in U$, let $S_{\lambda} = \left\{ f_i^{(\lambda)} \colon I \to I \right\}_{i=1}^m$ be a parametrized family of IFS such that $\lambda \mapsto f_i^{(\lambda)}$ is continuous from U to $C^{1+\alpha}(I)$. Let $\Pi_{\lambda} \colon \Sigma \to I$ be the nat. proj.
- Suppose that the transversality condition holds, i.e. there exists C>0 such that for every $\mathbf{i}, \mathbf{j} \in \Sigma$ with $i_1 \neq j_1$

$$\eta\left(\left\{\lambda \in U : \|\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})\| \le r\right\}\right) \le Cr^d.$$

• Simon, Solomyak and Urbański: For every ergodic measure μ and for η -almost every $\lambda \in U$

$$\dim_H \Lambda_{\lambda} = \min\{d, s_0(\lambda)\} \text{ and } \dim_H(\Pi_{\lambda})_* \mu = \min\left\{1, \frac{h_{\mu}}{\chi_{\mu}(\lambda)}\right\}.$$

• Let U be a locally compact, separable metric parameter space, and let η be a Borel probability measure on U.

- Let U be a locally compact, separable metric parameter space, and let η be a Borel probability measure on U.
- Let $\rho_{\lambda} : \Sigma_* \to \mathbb{R}_+$ be a quasi-multiplicative map depending uniformly continuously on $\lambda \in U$, that is,
 - $-\exists C > 0 \text{ and } 0 < \alpha < 1 \text{ such that } \rho_{\lambda}(\mathbf{i}) \leq C\alpha^{|\mathbf{i}|} \text{ for every } \mathbf{i} \in \Sigma_* \text{ and } \lambda \in U;$
 - $-\exists C > 0 \text{ such that } C^{-1} \leq \frac{\rho_{\lambda}(\mathbf{i}\mathbf{j})}{\rho_{\lambda}(\mathbf{i})\rho_{\lambda}(\mathbf{j})} \leq C \text{ for every } \mathbf{i}, \mathbf{j} \in \Sigma_* \text{ and } \lambda \in U;$
 - $-\forall \varepsilon > 0 \text{ and } \lambda_0 \in U \ \exists \delta > 0 \text{ such that } \rho_{\lambda}(\mathbf{i})^{1+\varepsilon} \leq \rho_{\lambda_0}(\mathbf{i}) \leq \rho_{\lambda}(\mathbf{i})^{1-\varepsilon} \text{ for every } \mathbf{i} \in \Sigma_* \text{ and } |\lambda \lambda_0| < \delta.$

- Let U be a locally compact, separable metric parameter space, and let η be a Borel probability measure on U.
- Let $\rho_{\lambda} \colon \Sigma_* \to \mathbb{R}_+$ be a quasi-multiplicative map depending uniformly continuously on $\lambda \in U$, that is,
 - $-\exists C>0$ and $0<\alpha<1$ such that $\rho_{\lambda}(\mathbf{i})\leq C\alpha^{|\mathbf{i}|}$ for every $\mathbf{i}\in\Sigma_*$ and $\lambda\in U$;
 - $-\exists C > 0 \text{ such that } C^{-1} \leq \frac{\rho_{\lambda}(\mathbf{i}\mathbf{j})}{\rho_{\lambda}(\mathbf{i})\rho_{\lambda}(\mathbf{j})} \leq C \text{ for every } \mathbf{i}, \mathbf{j} \in \Sigma_* \text{ and } \lambda \in U;$
 - $-\forall \varepsilon > 0$ and $\lambda_0 \in U \exists \delta > 0$ such that $\rho_{\lambda}(\mathbf{i})^{1+\varepsilon} \leq \rho_{\lambda_0}(\mathbf{i}) \leq \rho_{\lambda}(\mathbf{i})^{1-\varepsilon}$ for every $\mathbf{i} \in \Sigma_*$ and $|\lambda \lambda_0| < \delta$.
- Let $\Pi_{\lambda} \colon \Sigma \mapsto \mathbb{R}^d$ be such that there exists $\log K_n/n \to 0$ for every $\mathbf{i} \neq \mathbf{j} \in \Sigma$
 - $-\|\Pi_{\lambda}(\mathbf{i}) \Pi_{\lambda}(\mathbf{j})\| \le C\rho_{\lambda}(\mathbf{i} \wedge \mathbf{j}) \text{ for every } \lambda \in U;$
 - $-\eta(\{\lambda \in U: \|\Pi_{\lambda}(\mathbf{i}) \Pi_{\lambda}(\mathbf{j})\| \le \rho_{\lambda}(\mathbf{i} \wedge \mathbf{j})r\}) \le K_{|\mathbf{i} \wedge \mathbf{j}|}r^{d} \text{ for every } r > 0.$

Note: This is slightly different than the generalized projection scheme introduced by Solomyak.

Examples:

• (Self-conformal systems) $S = \{f_i^{(\mathbf{t})}(x) := f_i(x) + t_i\}_{i=1}^m \text{ with } f_i \in C^{1+\alpha}([0,1])$ and $(\mathbf{t}) = (t_1, \dots, t_m) \in U \subset \mathbb{R}^m \text{ such that } f_i^{(\mathbf{t})}([0,1]) \subset [0,1] \text{ and } ||f_i'|| < 1/2,$ where $\rho_{\mathbf{t}}(\mathbf{i}) = ||(f_{\mathbf{i}}^{(\mathbf{t})})'||$; (see Simon, Solomyak and Urbański)

Examples:

- (Self-conformal systems) $S = \{f_i^{(\mathbf{t})}(x) := f_i(x) + t_i\}_{i=1}^m \text{ with } f_i \in C^{1+\alpha}([0,1])$ and $(\mathbf{t}) = (t_1, \dots, t_m) \in U \subset \mathbb{R}^m \text{ such that } f_i^{(\mathbf{t})}([0,1]) \subset [0,1] \text{ and } ||f_i'|| < 1/2,$ where $\rho_{\mathbf{t}}(\mathbf{i}) = ||(f_{\mathbf{i}}^{(\mathbf{t})})'||$; (see Simon, Solomyak and Urbański)
- (Non-autonomous systems) $\Pi_{\lambda} \colon \{0,1\}^{\mathbb{N}} \mapsto \sum_{n=1}^{\infty} i_n \frac{\lambda^n}{n}$ with $\rho_{\lambda}(\mathbf{i}) = \lambda^n$; (see Nakajima)

Examples:

- (Self-conformal systems) $S = \{f_i^{(\mathbf{t})}(x) := f_i(x) + t_i\}_{i=1}^m \text{ with } f_i \in C^{1+\alpha}([0,1])$ and $(\mathbf{t}) = (t_1, \dots, t_m) \in U \subset \mathbb{R}^m \text{ such that } f_i^{(\mathbf{t})}([0,1]) \subset [0,1] \text{ and } ||f_i'|| < 1/2,$ where $\rho_{\mathbf{t}}(\mathbf{i}) = ||(f_{\mathbf{i}}^{(\mathbf{t})})'||$; (see Simon, Solomyak and Urbański)
- (Non-autonomous systems) $\Pi_{\lambda} \colon \{0,1\}^{\mathbb{N}} \mapsto \sum_{n=1}^{\infty} i_n \frac{\lambda^n}{n}$ with $\rho_{\lambda}(\mathbf{i}) = \lambda^n$; (see Nakajima)
- (Statistically self-similar systems) For every $\mathbf{i} \in \Sigma_*$, let $X_{\mathbf{i}}$ be i.i.d. compactly supported random variables with abs. cont. density, and let $\lambda_i \in (-1,1) \setminus \{0\}$ and $t_i \in \mathbb{R}$. Then $\Pi_{\lambda}(\mathbf{i}) = \sum_{n=0}^{\infty} (t_{i_n} + X_{\mathbf{i}|_n}) \lambda_{\mathbf{i}|_n}$ with $\rho(\mathbf{i}) = \lambda_{\mathbf{i}}$; (see Jordan, Pollicott, Simon)

Theorem (B., Simon, Śpiewak). Under the assumptions above: For η -almost every $\lambda \in U$,

$$\dim_H(\Pi_{\lambda})_*\mu = \min\left\{d, \frac{h_{\mu}}{\chi_{\mu}(\lambda)}\right\}$$
 for every ergodic left-shift invariant measure μ .

Under the assumptions above: For every ergodic left-shift invariant measure on μ

$$\lim_{n\to\infty}\frac{-1}{n}\log\rho_{\lambda}(\mathbf{i}|_n)=\lim_{n\to\infty}\frac{-1}{n}\sum_{\mathbf{i}\in\Sigma}\mu([\mathbf{i}])\log\rho_{\lambda}(\mathbf{i})=:\chi_{\mu}(\lambda)\text{ for }\mu\text{-a.e. }\mathbf{i}.$$

Theorem (B., Simon, Śpiewak). Under the assumptions above: For η -almost every $\lambda \in U$,

$$\dim_H(\Pi_{\lambda})_*\mu = \min\left\{d, \frac{h_{\mu}}{\chi_{\mu}(\lambda)}\right\}$$
 for every ergodic left-shift invariant measure μ .

Under the assumptions above: For every ergodic left-shift invariant measure on μ

$$\lim_{n\to\infty}\frac{-1}{n}\log\rho_{\lambda}(\mathbf{i}|_n)=\lim_{n\to\infty}\frac{-1}{n}\sum_{\mathbf{i}\in\Sigma_n}\mu([\mathbf{i}])\log\rho_{\lambda}(\mathbf{i})=:\chi_{\mu}(\lambda)\text{ for }\mu\text{-a.e. }\mathbf{i}.$$

Corollary. For η -almost every $\lambda \in U$, there exists a unique left-shift invariant ergodic probability measure μ_{λ} such that

$$\frac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}(\lambda)} = s_0(\lambda), \text{ where } s_0(\lambda) \text{ is the unique root of } P_{\lambda}(s) = \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{\mathbf{i} \in \Sigma_n} \rho_{\lambda}(\mathbf{i})^s \right),$$

and in particular,

$$\dim_H \Pi_{\lambda}(\Sigma) = \max \{ \dim_H (\Pi_{\lambda})_* \nu : \nu \text{ is } ergodic \} = \dim_H (\Pi_{\lambda})_* \mu_{\lambda} = \min \{ d, s_0(\lambda) \}.$$

• An ergodic left-shift invariant measure μ is called k-step Markov if for every $n \geq k$ and $\mathbf{i} = (i_1, \dots, i_n) \in \Sigma_*$

$$\nu([i_1,\ldots,i_n]) = \nu([i_1,\ldots,i_k]) \prod_{j=1}^n P_{\nu}(i_{j+k}|i_j,\ldots,i_{j+k-1}),$$

where

$$P_{\nu}(i|j_1,\ldots,j_k) = \begin{cases} \frac{\nu([j_1,\ldots,j_k,i])}{\nu([j_1,\ldots,j_k])} & \text{if } \nu([j_1,\ldots,j_k]) > 0, \\ 0 & \text{if } \nu([j_1,\ldots,j_k]) = 0. \end{cases}$$

• An ergodic left-shift invariant measure μ is called k-step Markov if for every $n \geq k$ and $\mathbf{i} = (i_1, \dots, i_n) \in \Sigma_*$

$$\nu([i_1,\ldots,i_n]) = \nu([i_1,\ldots,i_k]) \prod_{j=1}^n P_{\nu}(i_{j+k}|i_j,\ldots,i_{j+k-1}),$$

where

$$P_{\nu}(i|j_1,\ldots,j_k) = \begin{cases} \frac{\nu([j_1,\ldots,j_k,i])}{\nu([j_1,\ldots,j_k])} & \text{if } \nu([j_1,\ldots,j_k]) > 0, \\ 0 & \text{if } \nu([j_1,\ldots,j_k]) = 0. \end{cases}$$

• For two ergodic shift-invariant measures μ and ν such that $\mu([\mathbf{i}]) > 0 \Rightarrow \nu([\mathbf{i}]) > 0$ for every $\mathbf{i} \in \Sigma_*$, let

$$h(\mu \| \nu) = \lim_{n \to \infty} \frac{1}{n} \sum_{\mathbf{i} \in \Sigma_n} \mu([\mathbf{i}]) \log \frac{\mu([\mathbf{i}])}{\nu([\mathbf{i}])}$$
 be the Kullback-Liebler divergence,

if the limit exists.

• Note: $h(\mu||\nu) \ge 0$ and $h(\mu||\nu) = 0$ if and only if $\mu = \nu$; and it exists if ν is a k-step Markov.

Lemma. There exists a countable subset \mathcal{D} of ergodic left-shift invariant measures such that every $\nu \in \mathcal{D}$ is a k-step Markov for some $k \in \mathbb{N}$, moreover, for every $\varepsilon > 0$ and every μ ergodic there exists a $\nu \in \mathcal{D}$ such that

- 1. $\mu([\mathbf{i}]) > 0 \Rightarrow \nu([\mathbf{i}]) > 0 \text{ for every } \mathbf{i} \in \Sigma_*,$
- 2. $h(\mu \| \nu) < \varepsilon$,
- 3. $|h_{\mu} h_{\nu}| < \varepsilon$,
- 4. $\sup_{\lambda \in U} |\chi_{\mu}(\lambda) \chi_{\nu}(\lambda)| < \varepsilon$.

Lemma. There exists a countable subset \mathcal{D} of ergodic left-shift invariant measures such that every $\nu \in \mathcal{D}$ is a k-step Markov for some $k \in \mathbb{N}$, moreover, for every $\varepsilon > 0$ and every μ ergodic there exists a $\nu \in \mathcal{D}$ such that

- 1. $\mu([\mathbf{i}]) > 0 \Rightarrow \nu([\mathbf{i}]) > 0 \text{ for every } \mathbf{i} \in \Sigma_*,$
- 2. $h(\mu \| \nu) < \varepsilon$,
- 3. $|h_{\mu} h_{\nu}| < \varepsilon$,
- 4. $\sup_{\lambda \in U} |\chi_{\mu}(\lambda) \chi_{\nu}(\lambda)| < \varepsilon$.
- For $\nu \in \mathcal{D}$, let $V(\nu, \varepsilon) = \{\mu \text{ ergodic} : \text{ the four property above holds}\}$,
- For $\lambda_0 \in U$, let $U' \subset U$ such that $\rho_{\lambda_0}(\mathbf{i})^{1+\varepsilon} \leq \rho_{\lambda}(\mathbf{i}) \leq \rho_{\lambda_0}(\mathbf{i})^{1-\varepsilon}$ for $\mathbf{i} \in \Sigma_*$

Lemma. There exists a countable subset \mathcal{D} of ergodic left-shift invariant measures such that every $\nu \in \mathcal{D}$ is a k-step Markov for some $k \in \mathbb{N}$, moreover, for every $\varepsilon > 0$ and every μ ergodic there exists a $\nu \in \mathcal{D}$ such that

- 1. $\mu([\mathbf{i}]) > 0 \Rightarrow \nu([\mathbf{i}]) > 0$ for every $\mathbf{i} \in \Sigma_*$,
- 2. $h(\mu \| \nu) < \varepsilon$,
- 3. $|h_{\mu} h_{\nu}| < \varepsilon$,
- 4. $\sup_{\lambda \in U} |\chi_{\mu}(\lambda) \chi_{\nu}(\lambda)| < \varepsilon$.
- For $\nu \in \mathcal{D}$, let $V(\nu, \varepsilon) = \{ \mu \text{ ergodic} : \text{ the four property above holds} \}$,
- For $\lambda_0 \in U$, let $U' \subset U$ such that $\rho_{\lambda_0}(\mathbf{i})^{1+\varepsilon} \leq \rho_{\lambda}(\mathbf{i}) \leq \rho_{\lambda_0}(\mathbf{i})^{1-\varepsilon}$ for $\mathbf{i} \in \Sigma_*$

Proposition. For η -almost every $\lambda \in U'$, for every $\mu \in V(\nu, \varepsilon)$

$$\dim_{H}(\Pi_{\lambda})_{*}\mu \geq \min\left\{d, \frac{h_{\mu}}{\gamma_{\mu}(\lambda)}\right\} - O(\varepsilon).$$

The theorem follows by a standard covering and density argument.

For every $\mu \in V(\nu, \varepsilon)$, let A_{μ} be such that $\mu(A_{\mu}) > 1 - \delta$, where

$$A_{\mu} = \{ \mathbf{i} \in \Sigma : \mu([\mathbf{i}|_n]) \le C_{\mu} e^{-n(h_{\nu} - \varepsilon)}, \ C_{\mu}^{-1} e^{-n(\chi_{\mu}(\lambda_0) + \varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)$$
and $\mu([\mathbf{i}|_n]) \le C_{\mu} e^{\varepsilon n} \nu([\mathbf{i}|_n]) \}.$

For every $\mu \in V(\nu, \varepsilon)$, let A_{μ} be such that $\mu(A_{\mu}) > 1 - \delta$, where

$$A_{\mu} = \{ \mathbf{i} \in \Sigma : \mu([\mathbf{i}|_n]) \le C_{\mu} e^{-n(h_{\nu} - \varepsilon)}, \ C_{\mu}^{-1} e^{-n(\chi_{\mu}(\lambda_0) + \varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)$$
and $\mu([\mathbf{i}|_n]) \le C_{\mu} e^{\varepsilon n} \nu([\mathbf{i}|_n]) \}.$

Note: $A_{\mu} \subseteq \{\mathbf{i} \in \Sigma : \nu([\mathbf{i}|_n]) \le C^2 e^{-n(h_{\nu}-3\varepsilon)} \text{ and } C^{-2} e^{-n(\chi_{\nu}(\lambda_0)+3\varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)\} =: B.$

For every $\mu \in V(\nu, \varepsilon)$, let A_{μ} be such that $\mu(A_{\mu}) > 1 - \delta$, where

$$A_{\mu} = \{ \mathbf{i} \in \Sigma : \mu([\mathbf{i}|_n]) \le C_{\mu} e^{-n(h_{\nu} - \varepsilon)}, \ C_{\mu}^{-1} e^{-n(\chi_{\mu}(\lambda_0) + \varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)$$
and $\mu([\mathbf{i}|_n]) \le C_{\mu} e^{\varepsilon n} \nu([\mathbf{i}|_n]) \}.$

Note: $A_{\mu} \subseteq \{\mathbf{i} \in \Sigma : \nu([\mathbf{i}|_n]) \le C^2 e^{-n(h_{\nu}-3\varepsilon)} \text{ and } C^{-2} e^{-n(\chi_{\nu}(\lambda_0)+3\varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)\} =: B.$

$$\int_{U'} \sup_{\mu \in V(\mu, \varepsilon) \cap \{C_{n} \leq C\}} \iint \frac{d\mu|_{A_{\mu}}(\mathbf{i}) d\mu|_{A_{\mu}}(\mathbf{j})}{\|\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})\|^{s}} d\eta(\lambda)$$

For every $\mu \in V(\nu, \varepsilon)$, let A_{μ} be such that $\mu(A_{\mu}) > 1 - \delta$, where

$$A_{\mu} = \{ \mathbf{i} \in \Sigma : \mu([\mathbf{i}|_n]) \le C_{\mu} e^{-n(h_{\nu} - \varepsilon)}, \ C_{\mu}^{-1} e^{-n(\chi_{\mu}(\lambda_0) + \varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)$$
and $\mu([\mathbf{i}|_n]) \le C_{\mu} e^{\varepsilon n} \nu([\mathbf{i}|_n]) \}.$

Note: $A_{\mu} \subseteq \{\mathbf{i} \in \Sigma : \nu([\mathbf{i}|_n]) \le C^2 e^{-n(h_{\nu}-3\varepsilon)} \text{ and } C^{-2} e^{-n(\chi_{\nu}(\lambda_0)+3\varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)\} =: B.$

$$\int_{U', \mu \in V(\mu, \mathbf{s}) \cap \{C_{\mathbf{s}} < C\}} \int \int \frac{d\mu|_{A_{\mu}}(\mathbf{i}) d\mu|_{A_{\mu}}(\mathbf{j})}{\|\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})\|^{s}} d\eta(\lambda)$$

$$\int_{U'} \sup_{\mu \in V(\nu,\varepsilon) \cap \{C_{\mu} < C\}} \int \int \|\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})\|^{s} \|f(\lambda)\|$$

$$\leq \int_{U'} \sup_{\substack{\mu \in V(\nu,\varepsilon) \\ \mu \in \{C_{\mu} < C\}}} \sum_{\substack{n,m \in \mathbb{N} \\ \mathbf{k} \in B_{n}}} \frac{e^{ms}}{\rho_{\lambda}(\mathbf{k})^{s}} \mu|_{A_{\mu}} \times \mu|_{A_{\mu}} \left(\|\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})\| < \rho_{\lambda}(\mathbf{k})e^{-m} \& \right) d\eta(\lambda)$$

A few words on the proof

For every $\mu \in V(\nu, \varepsilon)$, let A_{μ} be such that $\mu(A_{\mu}) > 1 - \delta$, where

 $\rho_{\lambda}(\mathbf{j}) \approx e^{-m}$

$$A_{\mu} = \{ \mathbf{i} \in \Sigma : \mu([\mathbf{i}|_n]) \le C_{\mu} e^{-n(h_{\nu} - \varepsilon)}, \ C_{\mu}^{-1} e^{-n(\chi_{\mu}(\lambda_0) + \varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)$$
and $\mu([\mathbf{i}|_n]) \le C_{\mu} e^{\varepsilon n} \nu([\mathbf{i}|_n]) \}.$

Note: $A_{\mu} \subseteq \{\mathbf{i} \in \Sigma : \nu([\mathbf{i}|_n]) \le C^2 e^{-n(h_{\nu}-3\varepsilon)} \text{ and } C^{-2} e^{-n(\chi_{\nu}(\lambda_0)+3\varepsilon)} \le \rho_{\lambda_0}(\mathbf{i}|_n)\} =: B.$

$$\int_{U'} \sup_{\mu \in V(\nu,\varepsilon) \cap \{C_{\mu} < C\}} \iint \frac{d\mu|_{A_{\mu}}(\mathbf{i}) d\mu|_{A_{\mu}}(\mathbf{j})}{\|\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})\|^{s}} d\eta(\lambda)$$

$$\leq \int_{U'} \sup_{\substack{\mu \in V(\nu,\varepsilon) \\ \mu \in \{C_{\mu} < C\}}} \sum_{\substack{n,m \in \mathbb{N} \\ \mathbf{k} \in B_{n}}} \frac{e^{ms}}{\rho_{\lambda}(\mathbf{k})^{s}} \mu|_{A_{\mu}} \times \mu|_{A_{\mu}} \left(\|\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})\| < \rho_{\lambda}(\mathbf{k})e^{-m} \& \right) d\eta(\lambda)$$

$$\leq \int_{U'} \sup_{\substack{\mu \in V(\nu,\varepsilon) \\ \mu \in \{C_{\mu} < C\}}} \sum_{\substack{n,m \in \mathbb{N} \\ \mathbf{k} \in B_{n}}} \sum_{\substack{\mathbf{i},\mathbf{j} \in \Sigma_{*} \\ i_{1} \neq j_{1}}} \frac{e^{ms}}{\rho_{\lambda}(\mathbf{k})^{s}} \mu|_{A_{\mu}}([\mathbf{k}\mathbf{i}]) \mu|_{A_{\mu}}([\mathbf{k}\mathbf{j}]) \mathbb{1}_{\|\Pi_{\lambda}(\mathbf{k}\mathbf{i}) - \Pi_{\lambda}(\mathbf{k}\mathbf{j})\| < \rho_{\lambda}(\mathbf{k})e^{-m}} d\eta(\lambda)$$

A few words on the proof

 $\mathbf{k} \in B_n$ $\tilde{i_1} \neq j_1$

 $\rho_{\lambda}(\mathbf{i}) \approx e^{-m}$ $\rho_{\lambda}(\mathbf{j}) \approx e^{-m}$

$$\int_{U'} \sup_{\substack{\mu \in V(\nu,\varepsilon) \\ \mu \in \{C_{\mu} < C\}}} \sum_{\substack{n,m \in \mathbb{N} \\ \mathbf{k} \in B_n}} \sum_{\substack{\mathbf{i},\mathbf{j} \in \Sigma_* \\ i_1 \neq j_1 \\ \rho_{\lambda}(\mathbf{i}) \approx e^{-m} \\ \rho_{\lambda}(\mathbf{j}) \approx e^{-m}}} \frac{e^{ms}}{\rho_{\lambda}(\mathbf{i})^{s}} \mu|_{A_{\mu}}([\mathbf{k}\mathbf{i}]) \mu|_{A_{\mu}}([\mathbf{k}\mathbf{j}]) \mathbb{1}_{\|\Pi_{\lambda}(\mathbf{k}\mathbf{i}) - \Pi_{\lambda}(\mathbf{k}\mathbf{j})\| < \rho_{\lambda}(\mathbf{k})e^{-m}} d\eta(\lambda)$$

$$\leq \sum_{\mathbf{k}} \sum_{\mathbf{k}} \frac{e^{ms+2\varepsilon(n+m)}}{e^{-ns(\chi_{\nu}(\lambda_{0})+3\varepsilon)}} \nu([\mathbf{k}\mathbf{i}]) \nu([\mathbf{k}\mathbf{j}]) \eta \left(\lambda \in U' : \|\Pi_{\lambda}(\mathbf{k}\mathbf{i}) - \Pi_{\lambda}(\mathbf{k}\mathbf{j})\| < \rho_{\lambda}(\mathbf{k})e^{-m}\right)$$

A few words on the proof

 $\rho_{\lambda}(\mathbf{i}) \approx e^{-m}$ $\rho_{\lambda}(\mathbf{j}) \approx e^{-m}$

$$\int_{U'} \sup_{\substack{\mu \in V(\nu,\varepsilon) \\ \mu \in \{C_{\mu} < C\}}} \sum_{\substack{n,m \in \mathbb{N} \\ \mathbf{i}_{1} \neq j_{1} \\ \rho_{\lambda}(\mathbf{i}) \approx e^{-m} \\ \rho_{\lambda}(\mathbf{j}) \approx e^{-m}}} \sum_{\substack{\mathbf{i},\mathbf{j} \in \Sigma_{*} \\ i_{1} \neq j_{1} \\ \rho_{\lambda}(\mathbf{j}) \approx e^{-m} \\ \rho_{\lambda}(\mathbf{j}) \approx e^{-m}}} \frac{e^{ms}}{\rho_{\lambda}(\mathbf{i})^{\infty}} \mu|_{A_{\mu}}([\mathbf{k}\mathbf{i}]) \mu|_{A_{\mu}}([\mathbf{k}\mathbf{j}]) \mathbb{1}_{\|\Pi_{\lambda}(\mathbf{k}\mathbf{i}) - \Pi_{\lambda}(\mathbf{k}\mathbf{j})\| < \rho_{\lambda}(\mathbf{k})e^{-m}} d\eta(\lambda)$$

$$\leq \sum_{\substack{n,m \in \mathbb{N} \\ \mathbf{k} \in B_{n}}} \sum_{\substack{\mathbf{i},\mathbf{j} \in \Sigma_{*} \\ i_{1} \neq j_{1}}} \frac{e^{ms + 2\varepsilon(n + m)}}{e^{-ns(\chi_{\nu}(\lambda_{0}) + 3\varepsilon)}} \nu([\mathbf{k}\mathbf{i}]) \nu([\mathbf{k}\mathbf{j}]) \eta\left(\lambda \in U' : \|\Pi_{\lambda}(\mathbf{k}\mathbf{i}) - \Pi_{\lambda}(\mathbf{k}\mathbf{j})\| < \rho_{\lambda}(\mathbf{k})e^{-m}\right)$$

$$\sum_{\substack{n,m\in\mathbb{N}\\\mathbf{k}\in B_n}} \sum_{\substack{\mathbf{i},\mathbf{j}\in\Sigma_*\\i_1\neq j_1\\\rho_{\lambda}(\mathbf{i})\approx e^{-m}\\\rho_{\lambda}(\mathbf{j})\approx e^{-m}}} \frac{e^{-ns(\chi_{\nu}(\lambda_0)+3\varepsilon)}\nu([\mathbf{k}\mathbf{i}])\nu([\mathbf{k}\mathbf{j}])\eta} (\lambda \in \mathcal{O} \cdot \|\Pi_{\lambda}(\mathbf{k}\mathbf{i}) - \Pi_{\lambda}(\mathbf{k}\mathbf{j})\| < \rho_{\lambda}(\mathbf{k})e^{-ns(\chi_{\nu}(\lambda_0)+3\varepsilon)} \\
\leq \sum_{\substack{n,m\in\mathbb{N}\\\mathbf{k}\in B_n}} \sum_{\substack{\mathbf{i},\mathbf{j}\in\Sigma_*\\i_1\neq j_1}} \frac{e^{ms+2\varepsilon(n+m)}}{e^{-n(\chi_{\nu}(\lambda_0)+3\varepsilon)}}\nu([\mathbf{k}\mathbf{i}])\nu([\mathbf{k}\mathbf{j}])e^{-md} \leq \sum_{\substack{n,m\in\mathbb{N}\\e^{-ns(\chi_{\nu}(\lambda_0)+3\varepsilon)+n(h_{\nu}-3\varepsilon)}}} \frac{e^{ms+2\varepsilon(n+m)}}{e^{-ns(\chi_{\nu}(\lambda_0)+3\varepsilon)+n(h_{\nu}-3\varepsilon)}} < \infty$$

• For a fixed $\lambda_0 \in U$, an infinite sequence $\mathbf{i} \in \Sigma$ has exponential distance from the enemy if for every $\varepsilon > 0$ there exists C > 0 such that

dist
$$\left(\Pi_{\lambda_0}(\mathbf{i}), \bigcup_{\mathbf{j} \in \Sigma_n : \mathbf{j} \neq \mathbf{i}|_n} \Pi_{\lambda_0}([\mathbf{j}])\right) > C\rho_{\lambda}(\mathbf{i}|_n)e^{-\varepsilon n} \text{ for every } n \in \mathbb{N}.$$

• For a fixed $\lambda_0 \in U$, an infinite sequence $\mathbf{i} \in \Sigma$ has exponential distance from the enemy if for every $\varepsilon > 0$ there exists C > 0 such that

dist
$$\left(\Pi_{\lambda_0}(\mathbf{i}), \bigcup_{\mathbf{j} \in \Sigma_n : \mathbf{j} \neq \mathbf{i}|_n} \Pi_{\lambda_0}([\mathbf{j}])\right) > C\rho_{\lambda}(\mathbf{i}|_n)e^{-\varepsilon n} \text{ for every } n \in \mathbb{N}.$$

Theorem (B., Simon, Śpiewak). Suppose that $s_0(\lambda) < d$ for every $\lambda \in U$. Then for η -almost every $\lambda \in U$ the following holds: for every ergodic measure μ , μ -almost every \mathbf{i} has exponential distance from the enemy.

• For a fixed $\lambda_0 \in U$, an infinite sequence $\mathbf{i} \in \Sigma$ has exponential distance from the enemy if for every $\varepsilon > 0$ there exists C > 0 such that

dist
$$\left(\Pi_{\lambda_0}(\mathbf{i}), \bigcup_{\mathbf{j} \in \Sigma_n : \mathbf{j} \neq \mathbf{i}|_n} \Pi_{\lambda_0}([\mathbf{j}])\right) > C\rho_{\lambda}(\mathbf{i}|_n)e^{-\varepsilon n} \text{ for every } n \in \mathbb{N}.$$

Theorem (B., Simon, Śpiewak). Suppose that $s_0(\lambda) < d$ for every $\lambda \in U$. Then for η -almost every $\lambda \in U$ the following holds: for every ergodic measure μ , μ -almost every \mathbf{i} has exponential distance from the enemy.

Corollary. Under the conditions above, for η -almost every $\lambda \in U$ the following holds: For every ergodic measure μ , there exists a set $A \subset \Sigma$ such that $\mu(A) = 1$ and $\Pi_{\lambda}|_{A}$ is invertible and its inverse is Hölder continuous for every Hölder exponent $\alpha \in (0,1)$.

• For a fixed $\lambda_0 \in U$, an infinite sequence $\mathbf{i} \in \Sigma$ has exponential distance from the enemy if for every $\varepsilon > 0$ there exists C > 0 such that

dist
$$\left(\Pi_{\lambda_0}(\mathbf{i}), \bigcup_{\mathbf{j} \in \Sigma_n : \mathbf{j} \neq \mathbf{i}|_n} \Pi_{\lambda_0}([\mathbf{j}])\right) > C\rho_{\lambda}(\mathbf{i}|_n)e^{-\varepsilon n} \text{ for every } n \in \mathbb{N}.$$

Theorem (B., Simon, Śpiewak). Suppose that $s_0(\lambda) < d$ for every $\lambda \in U$. Then for η -almost every $\lambda \in U$ the following holds: for every ergodic measure μ , μ -almost every \mathbf{i} has exponential distance from the enemy.

Corollary. Under the conditions above, for η -almost every $\lambda \in U$ the following holds: For every quasi-Bernoulli ergodic measure ν , and for every ergodic measure μ

$$d_{(\Pi_{\lambda})_{*}\nu}(\Pi_{\lambda}(\mathbf{i})) = \frac{h(\nu||\mu) - h_{\nu}}{\chi_{\mu}(\lambda)} \text{ for } \mu\text{-almost every } \mathbf{i},$$

where
$$h(\nu|\mu) = \lim_{n \to \infty} \frac{-1}{n} \sum_{\mathbf{i} \in \Sigma_n} \mu([\mathbf{i}]) \log \nu([\mathbf{i}]).$$

Question Given a measure ν , describe the map $\alpha \mapsto \dim_H \{x : d_{\nu}(x) = \alpha\}$, where $d_{\nu}(x) = \lim_{r \to \infty} \frac{\log \nu(B(x,r))}{\log r}$.

• Arbeiter and Patschke: For the self-similar IFS $\mathcal{S} = \{f_i(x) = \lambda_i O_i x + t_i\}_{i=1}^m$ with SOSC, if $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}} \neq \{\lambda_1^{s_0}, \dots, \lambda_m^{s_0}\}^{\mathbb{N}}$ is a Bernoulli measure then $\dim_H \{x : d_{\Pi_*\mu}(x) = \alpha\} = \inf_{q \in \mathbb{R}} (q\alpha - T(q))$ for $\alpha \in I = \left[\min_i \frac{\log p_i}{\log \lambda_i}, \max_i \frac{\log p_i}{\log \lambda_i}\right]$, where $\sum_i p_i^q \lambda_i^{-T(q)} = 1$, and $\{x : d_{\Pi_*\mu}(x) = \alpha\} = \emptyset$ for $\alpha \notin I$.

• Barral and Feng: For the self-similar IFS $S = \{f_i(x) = \lambda_i x + t_i\}_{i=1}^m$ with ESC on \mathbb{R} and $\sum_i |\lambda_i| < 1$, if $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}} \neq \{\lambda_1^{s_0}, \dots, \lambda_m^{s_0}\}^{\mathbb{N}}$ then

$$\dim_{H} \left\{ x : d_{\Pi_{*}\mu}(x) = \alpha \right\} = \inf_{q \in \mathbb{R}} \left(q\alpha - T(q) \right) \text{ for } \alpha \in I = \left[\min_{i} \frac{\log p_{i}}{\log \lambda_{i}}, \frac{\sum_{i} \lambda_{i}^{s_{0}} \log p_{i}}{\sum_{i} \lambda_{i}^{s_{0}} \log \lambda_{i}} \right],$$

Theorem (B., Simon, Śpiewak). For the self-similar IFS $S = \{f_i(x) = \lambda_i x + t_i\}_{i=1}^m$ if $\sum_i |\lambda_i| < 1$ and $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}} \neq \{\lambda_1^{s_0}, \dots, \lambda_m^{s_0}\}^{\mathbb{N}}$, Then for Lebesgue-almost every (t_1, \dots, t_m)

$$\dim_H \left\{ x : d_{\Pi_* \mu}(x) = \alpha \right\} = \inf_{q \in \mathbb{R}} \left(q\alpha - T(q) \right) \text{ for } \alpha \in I = \left[\min_i \frac{\log p_i}{\log \lambda_i}, \max_i \frac{\log p_i}{\log \lambda_i} \right]$$

Theorem (B., Simon, Śpiewak). For the self-similar IFS $S = \{f_i(x) = \lambda_i x + t_i\}_{i=1}^m$ if $\sum_i |\lambda_i| < 1$ and $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}} \neq \{\lambda_1^{s_0}, \dots, \lambda_m^{s_0}\}^{\mathbb{N}}$, Then for Lebesgue-almost every (t_1, \dots, t_m)

$$\dim_H \left\{ x : d_{\Pi_* \mu}(x) = \alpha \right\} = \inf_{q \in \mathbb{R}} \left(q\alpha - T(q) \right) \text{ for } \alpha \in I = \left[\min_i \frac{\log p_i}{\log \lambda_i}, \max_i \frac{\log p_i}{\log \lambda_i} \right]$$

- Enough for q < 0.
- $\dim_H \{x : d_{\Pi_*\mu}(x) = \alpha\} \le \inf_{q < 0} (q\alpha T(q))$ by covering for $\sum_{i=1}^m p_i^q \lambda_i^{-T(q)} = 1$.

Theorem (B., Simon, Śpiewak). For the self-similar IFS $S = \{f_i(x) = \lambda_i x + t_i\}_{i=1}^m$ if $\sum_i |\lambda_i| < 1$ and $\mu = \{p_1, \dots, p_m\}^{\mathbb{N}} \neq \{\lambda_1^{s_0}, \dots, \lambda_m^{s_0}\}^{\mathbb{N}}$, Then for Lebesgue-almost every (t_1, \dots, t_m)

$$\dim_H \left\{ x : d_{\Pi_* \mu}(x) = \alpha \right\} = \inf_{q \in \mathbb{R}} \left(q\alpha - T(q) \right) \text{ for } \alpha \in I = \left[\min_i \frac{\log p_i}{\log \lambda_i}, \max_i \frac{\log p_i}{\log \lambda_i} \right]$$

- Enough for q < 0.
- $\dim_H \{x : d_{\Pi_*\mu}(x) = \alpha\} \le \inf_{q < 0} (q\alpha T(q))$ by covering for $\sum_{i=1}^m p_i^q \lambda_i^{-T(q)} = 1$.
- $\dim_H \{x : d_{\Pi_*\mu}(x) = \alpha\} \ge \sup \left\{ \frac{h_\nu}{\chi_\nu} : \frac{h(\nu \| \mu) h_\nu}{\chi_\nu} = \alpha \right\} = \inf_{q < 0} (q\alpha T(q)).$

Thank you for your attention!