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i=1

e Let ¥ = {1,...,m}" be the symbolic space and let o(iy,i,...) = (ia,3,. ..

the left-shift operator, (denote i A j the common part of i,j € X0)
e Let II: X — A be the natural projection
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e Let 1 be a left-shift invariant, ergodic probability measure on X
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e Suppose that every element f; € S of the IFS is a contracting C'*®-conformal
mappings (i.e. D, f; € O(d)),

e Feng-Hu: For every ergodic left-shift invariant measure p

— h
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e If Strong Open Set Condition (SOSC) holds then for every ergodic measure p
h
X

Question: How can we handle the overlapping cases?
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Special case: rational maps

i+ b |
e Suppose that S = {fz(x) _Z x—i—i—_d } such that
G T Qi ) g

fi e C*(I), f;(I) C I and sup |f/(z)] < 1 on a compact interval I C R.
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Special case: rational maps

a; T + bz "
S that S =< fi(x) = h that
e Suppose tha {f(x) Cix+di}il such tha
fi e C*(I), f;(I) C I and sup |f/(z)] < 1 on a compact interval I C R.
xel

e Hochman and Solomyak: If S satisfies the ESC, i.e.

1
lim inf —log min sup{|fi(z) — fi(z)|} > —o0,
n—oo 1 1175%1 xel
L)E2n

h
then for every Bernoulli measure p = {py,...,pn}", dimy I, = min {1, —“} :
Xu

Open questions: dimyq [I,u =7 & dimension of ergodic measures?
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Parameterized self-conformal systems

e Let U be a locally compact, separable metric parameter space, and let n be a
Borel probability measure on U.

eLet I C R? be compact and simply connected. For A € U, let
S, = { fiwz I —1 } be a parametrized family of IFS such that A — fi(A>
i=1
is continuous from U to C'*(I). Let ITy: ¥ — I be the nat. proj.

e Suppose that the transversality condition holds, i.e. there exists C' > 0 such
that for every i,j € ¥ with 1 # j;
n({A e U IE) - LG <r}) < Ore

e Simon, Solomyak and Urbanski: For every ergodic measure g and for n-almost

every A € U b
dimy Ay = min{d, sg(A)} and dimg(IIy). = min {1, . } .
Xpu(A)
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e Let U be a locally compact, separable metric parameter space, and let n be a
Borel probability measure on U.
o Let py: X, — R, be a quasi-multiplicative map depending uniformly continu-
ously on A € U, that is,
—E|C>Oand0<a<1suchthatpA()<C’oz"forevery1€2 and A\ € U;
— 3C > 0 such that C~! <M

pAI)pA(j)
— Ve > 0and Ay € U 3§ > 0 such that p\(i)}™ < py, (i) < pa(i)tF for every

i€, and |\ — \| <.
o Let II): ¥+ R? be such that there exists log K,,/n — 0 for every i #j € &
— M) — TG < Crali Aj) for every A € U;
“n{A €U+ ) — TG < paliA§)r}) < Ky for every 7> 0.

< (' for every i,j € Xy and A € U;

Note: This is slightly different than the generalized projection scheme introduced by
Solomyak.
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A generalized projection scheme
Examples:
e (Self-conformal systems) & = {fi(t)(x) = fi(z) + ¢}, with f; € C1([0,1])
and (t) = (t1,...,tn) € U C R™ such that f£”([0,1]) c [0,1] and || f/|| < 1/2,

where pg(i) = H(fi(t))’H; (see Simon, Solomyak and Urbanski)

o A" :
e (Non-autonomous systems) Ily: {0, 1} — > zn; with py(i) = A"; (see

Nakajima)

o (Statistically self-similar systems) For every i € ¥, let Xj be i.i.d. compactly
supported random variables with abs. cont. density, and let \; € (—1,1) \ {0}
and t; € R. Then II\(i) = >~ (t;, + Xi,) Ay, with p(i) = A;; (see Jordan,
Pollicott, Simon)
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A generalized projection scheme

Theorem (B., Simon, Spiewak). Under the assumptions above: For n-almost every
A e U,

h
dimg (IT))p = min {d, .

XMO‘)

Under the assumptions above: For every ergodic left-shift invariant measure on u

. —1 . .1 : : :
lim —log py(i|,) = lim — Z,u([l])log pa(i) =t xu(A) for p-ae. i.

} for every ergodic left-shift invariant measure pu.

Corollary. For n-almost every A\ € U, there exists a unique left-shift invariant
ergodic probability measure py such that

hy, . . .1 .
—2— = 50(A), where so(N) is the unique root of Py(s) = lim —log o) ],
Xy (A) n—00 M 16222
and in particular,

dimg I1)(2) = max{dimg(I1)).v : v is ergodic} = dimy(I1)).p\ = min{d, so(\)}.
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e For two ergodic shift-invariant measures p and v such that u(li]) > 0 =
v([i]) > 0 for every i€, let

h(pllv) = lim = Zu )log

if the limit exists.

be the Kullback-Liebler divergence,
([i])

e Note: h(u|lv) > 0 and h(p||v) = 0 if and only if u = v; and it exists if v is a
k-step Markov.
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Lemma. There exists a countable subset D of ergodic left-shift invariant measures
such that every v € D is a k-step Markov for some k € N, moreover, for every
e > 0 and every u ergodic there exists a v € D such that

1. p(li])) > 0= v([i]) > 0 for every i € %,

2. hiullv) < <.

8. |hy —hy| <e,

4. supxer [Xu(A) — xu(A)] <e.

o For v € D, let V(v,e) = {u ergodic : the four property above holds},
e For \g € U, let U’ C U such that py,(i)}™ < pa(i) < py,(i)1¢ fori e X,

Proposition. For n-almost every A € U’, for every p € V (v, €)

. . hy | .
dimg (IT) )sp > min {d, Xu()\)} O(e).

The theorem follows by a standard covering and density argument.
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Exponential Distance from the Enemy (EDE)

e Lor a fixed Ay € U, an infinite sequence i € X has exponential distance from the
enemy if for every € > 0 there exists C' > 0 such that

dist | 11, (i) U [Ty, ([i]) | > Cpa(iln)e =" for every n € N.
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Theorem (B., Simon, Spiewak). Suppose that so(\) < d for every X € U. Then
for n-almost every A € U the following holds: for every ergodic measure i, p-almost
every 1 has exponential distance from the enemy.

Corollary. Under the conditions above, for n-almost every A\ € U the following

holds: For every ergodic measure p, there exists a set A C X such that pu(A) = 1

and I1)| 4 is invertible and its inverse is Holder continuous for every Hélder exponent
€ (0,1).



Exponential Distance from the Enemy (EDE)

e Lor a fixed Ay € U, an infinite sequence i € X has exponential distance from the
enemy if for every € > 0 there exists C' > 0 such that

dist | 11, (i) U [Ty, ([j > Cpy(i],)e " for every n € N,
JGEnJ#IIn
Theorem (B., Simon, Spiewak). Suppose that so(\) < d for every X € U. Then

for n-almost every A € U the following holds: for every ergodic measure i, p-almost
every 1 has exponential distance from the enemy.

Corollary. Under the conditions above, for n-almost every A\ € U the following
holds: For every quasi-Bernoulli ergodic measure v, and for every ergodic measure p

d(HA>*V(H)‘(i>) B h(ylll:?)‘;

where h(v|p) = lim — Z p([i]) log (i)

n—oo T IEZ

Y for p-almost every i,



An application: Multifractal analysis

Question Given a measure v, describe the map « +— dimg {z : d,(z) = a}, where
1 B
d,(z) = lim ogv(B(z,7))

r—00 log T




An application: Multifractal analysis

o Arbeiter and Patschke: For the self-similar [FS S = {fi(x) = \O;x + t;}1,
with SOSC, if = {p1,...,pm} # {A° ..., X} is a Bernoulli measure then

. , o) = inf (o — Tl for o€ I — |min 08P log pi
dimy {z : di, () = a} = fif (qa (q)) for « min log 2, max oz |

where Zipq)\;T(q) =1, and {z : dp,u(z) = a} =0 for a ¢ I.

1
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An application: Multifractal analysis

e Barral and Feng: For the self-similar [FS S = { fi(x) = Nz + t;}2, with ESC
on Rand Y [N < 1, if = {p1,...,pm " # {A, ..., X0 then

| | logp; ), A logpi
dimg {z : di, () = a} = ;2]1% (g = T'(q)) fora € I = min og A’ S 2% log A ;

lnspedienmts .
e ’ T(2)
; ~ i _ 7))
' L*/M. a;,—l
’ Vf=f7>0
- —0('“""‘1_'/ V= 50
50_~ > A‘S.szb—-,:JO'('("’ Wz“l\'
Eb" R 5&;40-‘«»1‘&'4& CoAdifion
“ ’ Lov lowel Loceclo, 4 >0
&

+ | t t
el by B T“m
: N Xy 4"
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An application: Multifractal analysis

Theorem (B., Simon, Spiewak). For the self-similar IFS S = {fi(x) = Nz + £},

i 2N <1 and p={p1,...,pn N # {0, .., X0 Then for Lebesque-almost
every (t1,...,tm)

dimg {z : dn,u(z) = a} = ;g& (g —T(q)) fora el = [miin 12§§i,ml_ax lziii]

g T

Fh
t T

T:l
/ / T
/ 050 by
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An application: Multifractal analysis

Theorem (B., Simon, Spiewak). For the self-similar IFS S = {fi(x) = Nz + £},

ifS2N <1 and p={p1,...,pn N # {0, .., X0 Then for Lebesque-almost
every (t1,...,tm)

l log p;
dimy {z : d,,.(z) = a} = mf (g —T(q)) fora el = min 12;‘1;\ , max 1(??];\2_
e Fnough for g < 0.

o dimy {z : dn,,(v) = a} <inf,.o(ga —T(q)) by covering for Z;ilp?/\i—T(Q) = 1.



An application: Multifractal analysis

Theorem (B., Simon, Spiewak). For the self-similar IFS S = {fi(x) = Nz + £},

ifS2N <1 and p={p1,...,pn N # {0, .., X0 Then for Lebesque-almost
every (t1,...,tm)

l log p;
dimy {z : d,,.(z) = a} = mf (g —T(q)) fora el = [min 12;‘?\ , max 1;)?];\2_

e Enough for ¢ < 0.

o dimy {z : dn,,(v) = a} <inf,.o(ga —T(q)) by covering for Z?ilp?/\i—T@ = 1.

o dimy {z : dp,,(x) = a} > sup {zy My H'L;()y = oz} = inf,o (qa — T'(q)).



Thank you for your attention!



