Random subsets of Cantor sets generated by trees of coin flips

Pieter C. Allaart

University of North Texas (allaart@unt.edu)

Geometry and Fractals under the Midnight Sun Oulu, June 27, 2024

(joint with Taylor Jones)

Preprint: arXiv:2308.04569

The Cantor set

Fix $r \in (0, 1/2]$. Consider the IFS $\{f_0, f_1\}$ given by

$$
f_0(x) = rx + b_0, \qquad f_1(x) = rx + b_1,
$$

where $b_0 < b_1$ and $\{f_0, f_1\}$ satisfies the Open Set Condition with $(0, 1)$ as the open set.

Let C be the attractor of the IFS. Then C is:

• a Cantor set if $r < 1/2$;

• the interval $[0, 1]$ if $r = 1/2$. Either way,

$$
\dim_H C = \dim_B C = -\frac{\log 2}{\log r}.
$$

We are going to construct a random subset of C by flipping coins... but not in the usual way!

The binary tree

Consider a full infinite binary tree:

The blue path has coding (a, b, b, a, \dots) .

The binary tree with random labeling

We label the edges independently: θ with probability p, or 1 with probability $1 - p$.

The blue path has labeling $(0, 1, 1, 1, \dots)$.

If a path from the root has labeling X_1, X_2, \ldots , we associate with it a point

$$
x := \lim_{n \to \infty} f_{X_1} \circ f_{X_2} \circ \cdots \circ f_{X_n}([0,1]) \in C.
$$

The blue path leads to a point in $f_0 \circ f_1^3([0,1])$.

Pieter Allaart (allaart@unt.edu) [Random subsets of Cantor sets generated by trees of coin flips](#page-0-0)

The random subset F

- Let $\mathcal E$ denote the set of edges of the binary tree.
- Let $\Omega:=\{0,1\}^\mathcal{E}$ be the set of all labelings of the tree.
- We equip Ω with the product topology and μ_p , the Bernoulli $(p, 1-p)$ measure on its Borel σ -algebra.
- For a labeling $\omega \in \Omega$, each infinite path from the root down the tree gives a point in C as explained on the previous slide.
- We denote the set of all these points by $F(\omega)$.
- This makes F a random subset of C. It is by construction non-empty!

Example

For the sample labeling ω on the previous slide, $F(\omega)$ does not intersect $f^2_0((0,1))$ or $f^2_1((0,1))$. It does intersect $f_0 \circ f_1 \circ f_0 \circ f_1([0,1]).$

Branching random walk

- Helpful analogy: Branching random walk.
- \bullet Start with a single ancestor at generation 0 occupying the interval $[0, 1]$.
- In each generation, each individual produces two children, which each receive a random label, 0 or 1.
- A child with label 0 moves to the left subinterval; a child with label 1 to the right.
- In the nth generation, there are 2^n individuals. Their positions form some (random) distribution over the 2^n basic intervals of C at level n
- Thanks to Sascha Troscheit for pointing out this connection to us!

Remark

Our construction is not quite new: It was considered in a paper by I. Benjamini, O. Gurel-Gurevich & B. Solomyak in 2009, but with a different focus.

Theorem (A. & Jones, 2023)

We have, μ_p -almost surely,

$$
\frac{\log(p^2 + (1 - p)^2)}{\log r} \le \dim_H F \le \overline{\dim}_B F \le h(\xi(p)),
$$

where

$$
h(x) := \frac{x \log x + (1 - x) \log(1 - x)}{\log r}
$$

and

$$
\xi(p) := \frac{\log(2p)}{\log p - \log(1-p)}.
$$

Graphs of the bounds

The upper and lower bounds for $\dim_H F$, when $r = 1/3$.

Corollary

If
$$
p = 1/2
$$
, then $\dim_H F = \dim_B F = -\log 2/\log r$, μ_p -a.s.

Pieter Allaart (allaart@unt.edu) [Random subsets of Cantor sets generated by trees of coin flips](#page-0-0)

We might guess the true dimension of F to be

$$
h(p) = \frac{p \log p + (1-p) \log(1-p)}{\log r}.
$$

- \bullet This is the Hausdorff dimension of the set of points in C whose codings contain the digit 0 with frequency p , and 1 with frequency $1 - p$.
- Indeed, $h(p)$ lies between the upper and lower bound!

The bounds and our guess

The upper and lower bounds, with our guess in green.

Definition

For a label sequence $\mathbf{i} \in \{0,1\}^n$ and path $\mathbf{j} \in \{a,b\}^n$, let

 $A(i,j) := {\omega \in \Omega : \text{ the path } j \text{ receives label sequence } i \text{ from } \omega}.$

Example

For instance, in our sample labeling, the blue path shows that $\omega \in A(0111, abba).$

The binary tree with random labeling

We label the edges independently: θ with probability p, or 1 with probability $1 - p$.

The blue path shows that $\omega \in A(0111, abba)$.

Key ideas of the proof – lower bound

Write $I_{\mathbf i}:=f_{i_1}\circ\cdots\circ f_{i_n}([0,1]).$ Define a (random) measure m_ω on $F(\omega)$ by

$$
m_{\omega}(I_{\mathbf{i}}) := \frac{1}{2^n} \sum_{\mathbf{j} \in \{a,b\}^n} 1_{A(\mathbf{i}, \mathbf{j})}(\omega).
$$

In terms of the BRW, this is the proportion of individuals in generation n that occupy the interval $I_{\mathbf{i}}.$

• We estimate the energy

$$
\Phi_t(m_\omega) := \iint\limits_{[0,1] \times [0,1]} |x - y|^{-t} dm_\omega(x) dm_\omega(y),
$$

and show that, for

$$
t<\frac{\log(p^2+(1-p)^2)}{\log r},
$$

we have $\mathbb{E}_p [\Phi_t(m_\omega)] < \infty$, so that $\Phi_t(m_\omega) < \infty$, μ_p -a.s.

Key ideas of the proof – upper bound

For $\mathbf{i} \in \{0,1\}^n$, let

 $a_{\bf i}$: $=\mu_p($ at least one path of length n has label sequence ${\bf i})$

$$
=\mu_p\left(\bigcup_{{\mathbf j}\in\{a,b\}^n}A({\mathbf i},{\mathbf j})\right).
$$

• Let Z_n be the number of basic intervals at level n needed to cover F . Then

$$
\mathbb{E}_p(Z_n) = \sum_{\mathbf{i} \in \{0,1\}^n} a_{\mathbf{i}}.
$$

• We simply estimate

$$
a_{\mathbf{i}} \leq \sum_{\mathbf{j} \in \{a,b\}^n} \mu_p(A(\mathbf{i}, \mathbf{j})) = 2^n \mu_p(A(\mathbf{i}, \cdot)).
$$

(How much do we "throw away" by ignoring the overlaps?)

Key ideas of the proof – upper bound

• If i has k 1s and $n - k$ 0s, then

$$
\mu_p(A(\mathbf{i}, \cdot)) = p^k (1-p)^{n-k},
$$

so

$$
a_{\mathbf{i}} \le 2^n \mu_p(A(\mathbf{i}, \cdot)) = 2^n p^k (1-p)^{n-k}.
$$

• Thus,

$$
\mathbb{E}_p(Z_n) \le \sum_{k=0}^n \binom{n}{k} \min \left\{ 2^n p^k (1-p)^{n-k}, 1 \right\}.
$$

• It can be shown that this bound grows exponentially at rate

$$
\left[\xi^{-\xi}(1-\xi)^{-(1-\xi)}\right]^n,
$$

where

$$
\xi = \xi(p) = \frac{\log(2p)}{\log p - \log(1 - p)}.
$$

Recall: When $p = 1/2$, we have

$$
\dim_H F = \dim_H C = s := -\frac{\log 2}{\log r}, \qquad \mu_p - a.s.
$$

A generalization

- \bullet We can generalize our construction, by considering N similarities f_1, \ldots, f_N with ratio r satisfying the OSC, and an M -ary tree.
- Let $\mathbf{p} = (p_1, \ldots, p_N)$ be a probability vector, and equip the space of labelings $\Omega = \{1,2,\ldots,N\}^\mathcal{E}$ with the Bernoulli (\mathbf{p}) measure.
- This generates a random subset $F_{N,M}$ of C .

Graph of the lower bound

Generalization: Upper bound

We trivially have:

$$
\overline{\dim_B} F_{N,M} \le \min\left\{-\frac{\log N}{\log r}, -\frac{\log M}{\log r}\right\}
$$

Theorem (A. & Jones, 2024)

$$
\prod_{i=1}^{N} p_i^{-p_i} \le M \le \left(\prod_{i=1}^{N} p_i\right)^{-1/N}
$$

then there is a unique $\lambda \in [0,1]$ satisfying

$$
\sum_{i=1}^{N} p_i^{\lambda} \log(M p_i) = 0,
$$

and

 \overline{I}

$$
\overline{\dim}_B F_{N,M} \le -\frac{\lambda \log M + \log \left(\sum_{i=1}^N p_i^\lambda\right)}{\log r}, \qquad \mu_{\mathbf{p}}\text{-a.s.}
$$

Pieter Allaart (allaart@unt.edu) [Random subsets of Cantor sets generated by trees of coin flips](#page-0-0)

.

,

Some remarks

1. The inequalities

$$
\prod_{i=1}^N p_i^{-p_i} \leq M \leq \left(\prod_{i=1}^N p_i\right)^{-1/N}
$$

are always satisfied when $M = N$, but may hold for a wider range of M -values.

2. If

$$
M \le \min \left\{ \prod_{i=1}^{N} p_i^{-p_i}, \frac{1}{p_1^2 + \dots + p_N^2} \right\},\,
$$

then

$$
\dim_H F = \dim_B F = -\frac{\log M}{\log r}, \qquad \mu_{\mathbf{p}} - a.s.
$$

3. If $M \geq N$ and $p_i = 1/N$ for each i, we have

$$
\dim_H F = \dim_B F = \dim_H C = -\frac{\log N}{\log r}, \qquad \mu_{\mathbf{p}} - a.s.
$$

THANK YOU! KIITOS!