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The Cantor set

Fix r ∈ (0, 1/2]. Consider the IFS {f0, f1} given by

f0(x) = rx+ b0, f1(x) = rx+ b1,

where b0 < b1 and {f0, f1} satisfies the Open Set Condition with
(0, 1) as the open set.

0 1b0 b1r + b0 r + b1

Let C be the attractor of the IFS. Then C is:

a Cantor set if r < 1/2;

the interval [0, 1] if r = 1/2.

Either way,

dimH C = dimB C = − log 2

log r
.
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The grand plan

We are going to construct a random subset of C by flipping
coins... but not in the usual way!
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The binary tree

Consider a full infinite binary tree:
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The blue path has coding (a, b, b, a, . . . ).
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The binary tree with random labeling

We label the edges independently: 0 with probability p, or 1 with
probability 1− p.
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The blue path has labeling (0, 1, 1, 1, . . . ).
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If a path from the root has labeling X1, X2, . . . , we associate with
it a point

x := lim
n→∞

fX1 ◦ fX2 ◦ · · · ◦ fXn([0, 1]) ∈ C.
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The blue path leads to a point in f0 ◦ f3
1 ([0, 1]).
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The random subset F

Let E denote the set of edges of the binary tree.

Let Ω := {0, 1}E be the set of all labelings of the tree.

We equip Ω with the product topology and µp, the
Bernoulli(p, 1− p) measure on its Borel σ-algebra.

For a labeling ω ∈ Ω, each infinite path from the root down
the tree gives a point in C as explained on the previous slide.

We denote the set of all these points by F (ω).

This makes F a random subset of C. It is by construction
non-empty!

Example

For the sample labeling ω on the previous slide, F (ω) does not
intersect f2

0 ((0, 1)) or f
2
1 ((0, 1)). It does intersect

f0 ◦ f1 ◦ f0 ◦ f1([0, 1]).

Pieter Allaart (allaart@unt.edu) Random subsets of Cantor sets generated by trees of coin flips



Branching random walk

Helpful analogy: Branching random walk.

Start with a single ancestor at generation 0 occupying the
interval [0, 1].

In each generation, each individual produces two children,
which each receive a random label, 0 or 1.

A child with label 0 moves to the left subinterval; a child with
label 1 to the right.

In the nth generation, there are 2n individuals. Their positions
form some (random) distribution over the 2n basic intervals of
C at level n.

Thanks to Sascha Troscheit for pointing out this connection
to us!

Remark

Our construction is not quite new: It was considered in a paper
by I. Benjamini, O. Gurel-Gurevich & B. Solomyak in 2009, but
with a different focus.
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The dimension of F

Theorem (A. & Jones, 2023)

We have, µp-almost surely,

log(p2 + (1− p)2)

log r
≤ dimH F ≤ dimBF ≤ h(ξ(p)),

where

h(x) :=
x log x+ (1− x) log(1− x)

log r

and

ξ(p) :=
log(2p)

log p− log(1− p)
.
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Graphs of the bounds

The upper and lower bounds for dimH F , when r = 1/3.

Corollary

If p = 1/2, then dimH F = dimB F = − log 2/ log r, µp-a.s.
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A reasonable guess

We might guess the true dimension of F to be

h(p) =
p log p+ (1− p) log(1− p)

log r
.

This is the Hausdorff dimension of the set of points in C
whose codings contain the digit 0 with frequency p, and 1
with frequency 1− p.

Indeed, h(p) lies between the upper and lower bound!
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The bounds and our guess

The upper and lower bounds, with our guess in green.
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Key ideas of the proof – notation

Definition

For a label sequence i ∈ {0, 1}n and path j ∈ {a, b}n, let

A(i, j) := {ω ∈ Ω : the path j receives label sequence i from ω}.

Example

For instance, in our sample labeling, the blue path shows that
ω ∈ A(0111, abba).
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The binary tree with random labeling

We label the edges independently: 0 with probability p, or 1 with
probability 1− p.
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The blue path shows that ω ∈ A(0111, abba).
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Key ideas of the proof – lower bound

Write Ii := fi1 ◦ · · · ◦ fin([0, 1]). Define a (random) measure
mω on F (ω) by

mω(Ii) :=
1

2n

∑
j∈{a,b}n

1A(i,j)(ω).

In terms of the BRW, this is the proportion of individuals in
generation n that occupy the interval Ii.

We estimate the energy

Φt(mω) :=

∫∫
[0,1]×[0,1]

|x− y|−tdmω(x)dmω(y),

and show that, for

t <
log(p2 + (1− p)2)

log r
,

we have Ep [Φt(mω)] < ∞, so that Φt(mω) < ∞, µp-a.s.
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Key ideas of the proof – upper bound

For i ∈ {0, 1}n, let

ai : = µp(at least one path of length n has label sequence i)

= µp

 ⋃
j∈{a,b}n

A(i, j)

 .

Let Zn be the number of basic intervals at level n needed to
cover F . Then

Ep(Zn) =
∑

i∈{0,1}n
ai.

We simply estimate

ai ≤
∑

j∈{a,b}n
µp(A(i, j)) = 2nµp(A(i, ·)).

(How much do we “throw away” by ignoring the overlaps?)
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Key ideas of the proof – upper bound

If i has k 1s and n− k 0s, then

µp(A(i, ·)) = pk(1− p)n−k,

so
ai ≤ 2nµp(A(i, ·)) = 2npk(1− p)n−k.

Thus,

Ep(Zn) ≤
n∑

k=0

(
n

k

)
min

{
2npk(1− p)n−k, 1

}
.

It can be shown that this bound grows exponentially at rate[
ξ−ξ(1− ξ)−(1−ξ)

]n
,

where
ξ = ξ(p) =

log(2p)

log p− log(1− p)
.
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Hausdorff measure in the symmetric case

Recall: When p = 1/2, we have

dimH F = dimH C = s := − log 2

log r
, µp − a.s.

Proposition (A. & Jones, 2023)

When p = 1/2,
Hs(F ) = 0, µp − a.s.
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A generalization

We can generalize our construction, by considering N
similarities f1, . . . , fN with ratio r satisfying the OSC, and an
M -ary tree.

Let p = (p1, . . . , pN ) be a probability vector, and equip the
space of labelings Ω = {1, 2, . . . , N}E with the Bernoulli(p)
measure.

This generates a random subset FN,M of C.

Theorem (A. & Jones, 2024)

We have the lower bound

dimH FN,M ≥ min

{
− logM

log r
,
log(p21 + · · ·+ p2N )

log r

}
µp-a.s.
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Graph of the lower bound
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Generalization: Upper bound

We trivially have:

dimBFN,M ≤ min

{
− logN

log r
,− logM

log r

}
.

Theorem (A. & Jones, 2024)

If
N∏
i=1

p−pi
i ≤ M ≤

(
N∏
i=1

pi

)−1/N

,

then there is a unique λ ∈ [0, 1] satisfying

N∑
i=1

pλi log(Mpi) = 0,

and

dimBFN,M ≤ −
λ logM + log

(∑N
i=1 p

λ
i

)
log r

, µp-a.s.
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Some remarks

1. The inequalities

N∏
i=1

p−pi
i ≤ M ≤

(
N∏
i=1

pi

)−1/N

are always satisfied when M = N , but may hold for a wider
range of M -values.

2. If

M ≤ min

{
N∏
i=1

p−pi
i ,

1

p21 + · · ·+ p2N

}
,

then

dimH F = dimB F = − logM

log r
, µp − a.s.

3. If M ≥ N and pi = 1/N for each i, we have

dimH F = dimB F = dimH C = − logN

log r
, µp − a.s.
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Thank you!

Kiitos!
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