Homogeneous non-Rajchman self-similar measures on the line

Tianhan Yi

The Chinese University of Hong Kong

Geometry and Fractals under the Midnight Sun

University of Oulu

(Based on joint work with De-Jun Feng)

KORK SERVER SHOP

1/8

- \bullet μ is a finite Borel measure on \mathbb{R} .
- **•** Fourier transform

$$
\hat{\mu}(\xi) = \int_{\mathbb{R}} e^{2\pi i \xi x} d\mu(x).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

• μ is Rajchman if lim_{$\xi \rightarrow \infty$} $\hat{\mu}(\xi) = 0$.

Self-similar measures

- Let $m\geq 2$, $\boldsymbol{\lambda}=(\lambda_1,\ldots,\lambda_m)\in (0,1)^m$, $\mathbf{a}=(a_1,\ldots,a_m)\in \mathbb{R}^m$ and $\mathbf{p} = (p_1, \ldots, p_m)$ a probability measure.
- $\mu = \mu_{\lambda}^{\mathbf{p}}$ $_{\boldsymbol{\lambda},\mathsf{a}}^{\mathsf{p}}$ is self-similar associated with the IFS $\{\varphi_j\}$ and the probability **p** if

$$
\mu = \sum_{j=1}^{m} p_j \mu \circ (\varphi_j^{-1}), \quad \text{where } \varphi_j(x) = \lambda_j x + a_j.
$$

 $\mu_{\lambda}^{\mathbf{p}}$ $_{\boldsymbol{\lambda},\mathsf{a}}^\mathsf{p}$ is called to be homogeneous if $\lambda_j = \lambda$ for all $j = 1,\ldots,m.$

Problem: Can we characterize Rajchman self-similar measures on the line?

If $m=2,~\lambda_1=\lambda_2=\lambda$ and $p_1=p_2=\frac{1}{2}$ $\frac{1}{2}$, then $\mu_{\lambda} = \mu_{\lambda}^{\mathbf{p}}$ $\frac{\mathsf{p}}{\lambda, \mathsf{a}}$ is the Bernoulli convolution associated with λ .

Theorem (Erdös 1939)

If λ^{-1} is a Pisot number not equal to 2, then μ_λ is not Rajchman.

Theorem (Salem 1943)

If μ_{λ} is not Rajchman, then λ^{-1} is Pisot.

Remark: When $m \geq 3$ and $a \in \mathbb{Z}^m$, their methods still work after a slight modification (see e.g. Lau-Ngai-Rao 2001).

Assume $\mu_{\boldsymbol{\lambda}}^{\mathbf{p}}$ $\mathbf{P}_{\lambda,\mathbf{a}}$ is a non-trivial self-similar measure with $\mathbf{p} > 0$.

Theorem (Li-Sahlsten 2022)

If there exist $i \neq j$ such that $\log \lambda_i / \log \lambda_j \notin \mathbb{Q}$, then $\mu_\lambda^\mathbf{p}$ λ _{,a} is Rajchman for all a and p.

Theorem (Brémont 2021)

Let $\lambda_j = \lambda^{n_j}$ for $n_j \in \mathbb{N}$ with $gcd(n_1, \ldots, n_m) = 1$. There exists some **p** such that $\mu_{\lambda}^{\mathbf{p}}$ $_{\lambda,\mathsf{a}}^\mathsf{p}$ is not Rajchman if and only if λ^{-1} is Pisot and the IFS is linearly conjugate to one with $a_i \in \mathbb{Q}(\lambda)$.

Remark: Rapaport extends Brémont's result to high dimension.

Question: In homogeneous case, if the IFS is of Pisot type as in Brémont's setting, is $\mu^{\mathbf{p}}_{\bm{\lambda}}$ $_{\lambda,\mathsf{a}}^{\mathsf{p}}$ non-Rajchman for all $\mathsf{p}?$

Theorem (Feng-Y, 2024)

Let $\mu_{\lambda}^{\mathbf{p}}$ $_{\lambda,\mathsf{a}}^\mathsf{p}$ be a homogeneous self-similar measure. If λ^{-1} is a non-integer Pisot number and $a_j \in \mathbb{Q}(\lambda)$, then $\mu_\lambda^{\mathbf{p}}$ $_{\lambda,\mathsf{a}}^{\mathsf{p}}$ is not Rajchman for all p.

KO K K G K K E K G L K G K K K K K K K K K K

- Our proof is inspired by Erdös' argument. The difficulty is when $a_i \in \mathbb{Q}(\lambda)$, the distribution of the roots of the trigonometric polynomial associated with the self-similar measure is much more complicated.
- When the IFS is non-homogeneous or it is homogeneous but $\lambda^{-1} \in \mathbb{Z}$, it is possible that the measure is Lebesgue.

K ロ ▶ K @ ▶ K 할 X X B X → 할 → 이익단

THANK YOU

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q