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We have, from real data analysis, the following multifractal spectrum estimate
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Illustration : 2D Example
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The idea is then to change the framework and space used from

f ∈ W s,p(RD) with |f |W s,p(RD ) :=

(∫∫
R2D

|∆n
hf (x)|p

|h|sp+D
dxdh

)1/p

< +∞.

with affine multifractal spectrum to

f ∈ W µ,p(RD) with |f |Wµ,p(RD ) :=

(∫∫
R2D

|∆n
hf (x)|p

µ(B[x , x + nh])p|h|2D dxdh

)1/p

< +∞.

with µ = µt ⊗µa (µt and µa will
be supposed equal here) where
generic function have concave
multifractal spectrum.



For 0 < d < D and d ′ := D − d , my
goal is to look at

fa := f |Ha :
Rd −→ R
t 7−→ f (t, a).

with Ha := {(t, a) | t ∈ Rd} the
d-dimensional affine subspace of RD

for a ∈ Rd′ (here d = d ′).
Figure: Representation of fa for a ∈ Rd

in R2d with measure µ = µt ⊗ µa

The multifractal spectrum Dfa(h) = dimH (Efa(h)) highly depend on the trace in
a ∈ Rd , contrarily to what happens for standard Soboloev and Besov space with

Efa(h) = {x ∈ Rd : hfa(x) = h}.
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Figure: Multifractal spectrum Dfa deduced from Dµ
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